• 제목/요약/키워드: Social network information

검색결과 2,485건 처리시간 0.027초

핀테크 이용 동기에 따른 이용자 태도와 구전의도의 관계 - 혁신저항과 메시지 유형의 조절효과 - (Effects of FIN-TECH use motivation on User Attitude and Word Of Mouth Intention: Focus on a Innovation Resistance Tendency and Type of Message (Rational, Emotional))

  • 설상철;정성광;최우영
    • 경영과정보연구
    • /
    • 제36권5호
    • /
    • pp.195-222
    • /
    • 2017
  • 오늘날의 경제는 모든 영역의 경계가 허물어짐에 따라 서로 다른 산업 간의 융복합화가 활발해지며 이는 모바일, 소셜 네트워크 서비스 등의 혁신을 이루어내고 있다. 이러한 기술혁명가운데 모바일과 인터넷의 장점을 결합하여 금융과 IT의 업무를 손쉽게 처리할 수 있는 오늘날 새로운 기술을 핀테크라 하며 이러한 핀테크는 금융을 의미하는 파이낸스(Finance)와 기술을 의미하는 테크놀로지(Technology)의 합성어이다. 이에 본 연구는 핀테크 이용 동기(유용성, 즐거움)가 이용자 태도, 구전의도에 미치는 영향의 전반적인 구조적 관계에 대하여 살펴보았다. 이와 더불어 혁신저항 성향에 따라 핀테크 이용 동기, 이용자 태도, 구전 의도는 어떻게 달라지는지 살펴보았다. 또한, 메시지 유형(이성적, 감성적)에 따라 핀테크 이용 동기, 이용자 태도, 구전 의도는 어떻게 달라지는지 살펴보았다. 한편, 본 연구의 주요결과는 다음과 같다. 첫째로, 핀테크 이용 동기요인의 유용성과 즐거움은 사용자태도에 긍정적인 영향을 미치는 것으로 나타났으며 이용자 태도 또한 구전의도에 긍정적인 영향을 미치는 것으로 나타났다. 둘째로, 핀테크 이용 동기, 이용자 태도, 구전의도간의 관계는 소비자들의 혁신저항에 따라 차이가 나는 것으로 밝혀졌다. 셋째로, 핀테크 이용 동기, 이용자 태도, 구전의도간의 관계는 메시지 유형(이성적, 감성적)에 따라 차이가 나는 것으로 밝혀졌다. 연구의 결론 부분에서는 연구결과의 요약, 시사점 및 한계점, 그리고 향후 연구방향에 대해서 기술하였다.

갈색양송이 인지도 제고를 위한 소비 성향 분석 (Analysis of trends in brown button mushroom consumption for raising awareness)

  • 오연이;장갑열;오민지;임지훈
    • 한국버섯학회지
    • /
    • 제17권3호
    • /
    • pp.167-170
    • /
    • 2019
  • 갈색양송이는 백색양송이보다 병에 강하고 재배관리가 쉬워 농가에서 재배를 하고 싶지만, 아직 국내 소비자들의 인식이 부족하여 일부 친환경 농가에서만 재배를 하고 있는 실정이다. 이에 갈색양송이에 대한 1분정도의 동영상으로 사전 정보를 준 후 인지도와 선호도를 SNS로 설문조사를 실시하였고, 설문 응답자의 200명을 임의로 선정하여 식미평가를 진행하였다. 설문 응답자의 83%가 갈색양송이를 접한 적이 없다고 했으며, 동영상으로 정보를 접한 후 98%가 '맛에 대한 호기심'(44%)의 이유로 구매 의사를 밝혔다. 식미평가에서는 갈색양송이가 32%가 '맛있다', 31%가 '식감이 좋다', 28%가 '향이 좋다'로 응답하였다. 또한 섭취 후에 95%가 갈색 양송이 구매를 원하는 것으로 확인되었다. 이 결과로 갈색양송이에 대한 대중적 인식, 선호, 식미와 버섯에 영양성분과 기능성에 대한 정보가 소비로 이루어 진다는 것을 확인하였다.

영상정보교류 실태 파악을 위한 의사 설문조사 (Status of Interchange of Medical Imaging in Korea: A Questionnaire Survey of Physicians)

  • 최문형;정승은;김성준;신나영;용환석;우현식;정우경;진광남;최선형
    • 대한영상의학회지
    • /
    • 제79권5호
    • /
    • pp.247-253
    • /
    • 2018
  • 이 연구의 목적은 영상정보교류의 효용성을 높이기 위한 영상 품질 기준 연구에서 영상정보교류의 실태를 파악하고 영상정보교류에 대한 의사들의 의견을 수렴하기 위해 시행한 설문조사의 결과를 정리하는 것이다. 설문조사는 개별 접촉 또는 소셜 네트워크 서비스를 통해 홍보하였고, 자발적으로 참여한 의사가 설문조사의 대상이다. 설문조사는 기본 정보 및 영상정보교류에 대한 11개의 문항으로 구성되었다. 총 30개 진료과의 전문의 160명이 설문조사에 참여하였고, 95.6%의 응답자가 상급종합병원 또는 종합병원에 근무하는 상태였다. 외부 병원에서 영상검사를 시행한 후 의뢰되는 환자가 빈번하였다. 하지만 판독소견서가 함께 교류되는 경우는 드물었고, 의뢰받은 의료기관의 영상의학과 전문의에 의한 재판독을 통해 이차적인 의견을 구하고자 하는 요구가 많았다. 결론적으로, 외부 판독소견서가 누락되는 경우가 많으므로 판독소견서가 영상정보와 함께 교류될 수 있도록 하는 방안의 마련이 필요하다. 또한 외부 판독이 있더라도 재판독이 필요하다는 의견이 많은 점을 고려할 때 판독소견서에 반드시 포함되어야 할 기본적인 판독소견서의 요소 및 외부 검사의 재판독에 대한 가이드라인이 필요할 것으로 생각된다.

동시출현단어 분석을 활용한 한국어교육에서의 학습전략 연구 동향 탐색 (Exploring the Research Trends of Learning Strategies in Korean Language Education Using Co-word Analysis)

  • 허영수;박지홍
    • 정보관리학회지
    • /
    • 제38권2호
    • /
    • pp.65-86
    • /
    • 2021
  • 외국어 교육 분야에서 학습자는 교육의 한 축을 이루는 중요한 부분이지만 한국어교육의 경우 교육 내용, 교수 방법, 교재 등에 비해 학습자 연구는 미진한 면이 있었다. 이에 학습자 연구, 그중에서도 학습전략 연구가 어떻게 이루어져 왔는지를 분석하고 더 나은 교육을 위해 연구가 필요한 부분을 도출해 보는 것은 의미가 있다. 본 연구에서는 한국어교육 분야에서 학습전략 연구의 현황을 분석하기 위해 학술지와 학위논문의 제목에 대해 동시출현단어 분석을 진행하였다. 연구 결과, 한국어 학습자의 학습전략 관련 가장 많은 연구가 이루어진 분야는 '읽기'이고, 대상은 '중국인 유학생'과 '결혼이민자'였다. 또한, 연구 주제에 대한 서브그룹 분석 결과를 보면 주요 서브그룹이 네 개가 나타나는데 '학문 목적 읽기' 관련 그룹, '요청, 거절, 대화 등 화행' 관련 그룹, '쓰기' 관련 그룹, '어휘, 듣기' 관련 그룹이다. 이를 통해 한국어 학습자의 학습전략과 관련해 연구자들의 주요 관심 분야가 '읽기, 화행' 등임을 알 수 있으며, 연구 대상과 연구 분야가 부분적으로 편중되어 있는 상황이므로 다양한 분야와 대상으로 연구를 확대할 필요가 있음을 알 수 있다.

머신 러닝을 활용한 회사 SNS 메시지에 내포된 심리적 거리 추출 연구 (A Study on the Extraction of Psychological Distance Embedded in Company's SNS Messages Using Machine Learning)

  • 이성원;김진혁
    • 경영정보학연구
    • /
    • 제21권1호
    • /
    • pp.23-38
    • /
    • 2019
  • 소셜 네트워크 서비스(이하 SNS)는 회사의 마케팅 채널로 적극 활용되고 있으며, 회사들의 고객층에 적합한 내용과 어조를 활용하여 주기적으로 SNS 메시지를 작성하는 등 활발한 마케팅을 펼치고 있다. 본 논문에서는 이제까지 간과되었던 SNS 메시지에 내포된 심리적 거리에 초점을 맞춰 전통적인 코더를 활용한 내용 분석(content analysis)과 자연어 처리 기법 및 머신 러닝 방법을 혼합하여 심리적 거리를 측정하는 분석 방법을 연구하였다. SNS 메시지의 심리적 거리 분석을 위해 코더들을 활용하여 내용분석을 수행하였으며, 이와 같은 방법으로 레이블링된 데이터를 자연어 처리 방법을 이용하여 워드 임베딩을 수행함으로써 머신 러닝 수행을 위한 입력 데이터를 마련하였다. 머신 러닝 분석법 중 Support Vector Machine(SVM)을 이용하여 SNS 메시지와 심리적 거리 간의 관계를 학습시켰으며, 마지막으로 테스트 데이터를 이용하여 심리적 거리를 예측함으로써 머신 러닝 분석의 성과를 검증하였다. 심리적 거리측정 방법론 수행 결과, 코더들의 내용분석 결과가 특정 값으로 편향되어 SVM 예측의 민감도와 정밀도가 낮은 결과가 도출되었다. 심리적 거리 응답 비율을 보정하고 코더들의 1차 내용분석 결과 중 답변이 일치한 데이터로 한정지어 머신 러닝을 실행한 결과 심리적 거리 예측의 정확도, 민감도, 특이도, 정밀도 모두 향상되어 심리적 거리가 70% 이상 예측되는 성과를 보였다. 본 연구는 SNS 메시지의 심리적 거리를 측정하는 방법을 제시함으로써 독자와의 심리적 거리를 제어 가능한 전략 요소로 활용 가능하게 할 것이라 기대된다.

대용량 소셜 미디어 감성분석을 위한 반감독 학습 기법 (Semi-supervised learning for sentiment analysis in mass social media)

  • 홍소라;정연오;이지형
    • 한국지능시스템학회논문지
    • /
    • 제24권5호
    • /
    • pp.482-488
    • /
    • 2014
  • 대표적인 소셜 네트워크 서비스(SNS)인 트위터의 내용을 분석하여 자동으로 트윗에 나타난 사용자의 감성을 분석하고자 한다. 기계학습 기법을 사용해서 감성 분석 모델을 생성하기 위해서는 각각의 트윗에 긍정 또는 부정을 나타내는 감성 레이블이 필요하다. 그러나 사람이 모든 트윗에 감성 레이블을 붙이는 것은 비용이 많이 소요되고, 실질적으로 불가능하다. 그래서 본 연구에서는 "감성 레이블이 있는 데이터"와 함께 "감성 레이블이 없는 데이터"도 활용하기 위해서 반감독 학습기법인 self-training 알고리즘을 적용하여 감성분석 모델을 생성한다. Self-training 알고리즘은 "레이블이 있는 데이터"의 레이블이 있는 데이터를 활용하여 "레이블이 없는 데이터"의 레이블을 확정하여 "레이블이 있는 데이터"를 확장하는 방식으로, 분류모델을 점진적으로 개선시키는 방식이다. 그러나 데이터의 레이블이 한번 확정되면 향후 학습에서 계속 사용되므로, 초기의 오류가 계속적으로 학습에 영향을 미치게 된다. 그러므로 조금 더 신중하게 "레이블이 없는 데이터"의 레이블을 결정할 필요가 있다. 본 논문에서는 self-training 알고리즘을 이용하여 보다 높은 정확도의 감성 분석 모델을 생성하기 위하여, self-training 중 "감성 레이블이 없는 데이터"의 레이블을 결정하여 "감성 레이블이 있는 데이터"로 확장하기 위한 3가지 정책을 제시하고, 각각의 성능을 비교 분석한다. 첫 번째 정책은 임계치를 고려하는 것이다. 분류 경계로부터 일정거리 이상 떨어져 있는 데이터를 선택하고자 하는 것이다. 두 번째 정책은 같은 개수의 긍/부정 데이터를 추가하는 것이다. 한쪽 감성에 해당하는 데이터에만 국한된 학습을 하는 것을 방지하기 위한 것이다. 세 번째 정책은 최대 개수를 고려하는 것이다. 한 번에 많은 양의 데이터가 "감성 레이블이 있는 데이터"에 추가되는 것을 방지하고 상위 몇%만 선택하기 위해서, 선택되는 데이터의 개수의 상한선을 정한 것이다. 실험은 긍정과 부정으로 분류되어 있는 트위터 데이터 셋인 Stanford data set에 적용하여 실험하였다. 그 결과 학습된 모델은 "감성 레이블이 있는 데이터" 만을 가지고 모델을 생성한 것보다 감성분석의 성능을 향상 시킬 수 있었고 3가지 정책을 적용한 방법의 효과를 입증하였다.

국내 프로축구 팬들의 유니폼 소비 분석: 손흥민의 토트넘 홋스퍼 FC 이적 전후 비교 (Analysis of Football Fans' Uniform Consumption: Before and After Son Heung-Min's Transfer to Tottenham Hotspur FC)

  • 최영현;이규혜
    • 지능정보연구
    • /
    • 제26권3호
    • /
    • pp.91-108
    • /
    • 2020
  • 박지성 선수의 2005년 맨체스터 유나이티드 FC 입단 이후로, 국내에서 프로축구 유니폼 시장이 본격적으로 성장하기 시작했다. 이후, 국내 선수들의 해외 리그에서 활약이 계속되면서 국내에서도 잉글랜드 프리미어리그에 대한 대중의 관심이 지속되고 있다. 이러한 시점에서 본 연구는 국내 프로축구 팬들의 유니폼 소비에 전반적인 소비자 인식을 알아보고, 선수의 영입에 따른 소비자 인식 변화를 비교하고자 했다. EPL의 토트넘에서 활동하고 있는 손흥민 선수의 영입 전후를 중심으로 소셜 미디어에 나타난 프로축구 팬들의 소비자 인식과 구매 요인을 알아보았다. 'EPL 유니폼'을 키워드로, 국내 포털사이트와 소셜 미디어의 게시글을 수집하고, 텍스트 마이닝, SNA, 회귀분석을 사용하여 분석했다. 연구 결과, 첫째, 선수의 소속 팀, 실적, 포지션과 구단의 실적, 순위, 리그의 우승 여부가 프로축구 유니폼의 구매와 탐색에 있어 주요 요인으로 확인되었다. 가격, 디자인, 사이즈, 로고 등과 같은 항목보다 유니폼의 형태, 마킹, 정품 여부, 스폰서와 더 중요하게 작용하고 있었다. 둘째, 구조적 등위성 분석과 군집분석을 통해 국내 프로축구 팬들 사이에서 유니폼과 관련되어 언급되고 있는 주요 주제를 알아본 결과, EPL에 소속된 구단과 유명 선수들이 가장 핵심적인 주제로 나타났다. 셋째, 프로축구 유니폼에 대한 시기별 주제는 월드컵과 EPL 리그에 대한 관심에서 EPL에서 활동하는 다양한 국내외 선수들에 대한 관심으로, 2015년 이후에는 유니폼 자체에 대한 것으로 주제가 변화했다. 이를 통해, 선수들의 이적에 따라 선수가 소속된 해당 구단의 유니폼이 관심을 받고 있음을 알 수 있었다. 넷째, 남녀 소비자 모두 손흥민에 대한 관심이 증가함에 따라서 토트넘이 소속된 리그인 EPL에 대한 관심도 증가하는 것으로 나타났다. 여성의 경우 손흥민에 대한 관심이 증가함에 따라 축구 유니폼에 대해서도 관심을 가지는 것으로 나타난 반면, 남성의 경우 손흥민 선수에 대한 관심과 축구 유니폼에 대한 관심 사이의 관계가 유의하게 나타나지 않았다. 각 구단은 선수와 구단의 성적과 이미지 관리, 스폰서 브랜드 관리에 집중하고, 선수의 이적이 결정되면 선수의 자국에 해당 물량의 공급을 늘리며, 인기를 끌고 있는 선수의 등번호가 부착된 유니폼의 경우에는 여성을 위한 다양한 사이즈를 제공해야 할 필요가 있다.

비접촉 데이터 사회와 아카이브 재영토화 (Contactless Data Society and Reterritorialization of the Archive )

  • 조민지
    • 기록학연구
    • /
    • 제79호
    • /
    • pp.5-32
    • /
    • 2024
  • 한국 정부가 UN의 2022년 전자정부 발전 지수에서 UN가입 193개국 중 3위에 랭크됐다. 그동안 꾸준히 상위국으로 평가된 한국은 분명 세계 전자정부의 선도국이라 할 수 있다. 전자정부의 윤활유는 데이터다. 데이터는 그 자체로 정보가 아니고 기록도 아니지만 정보와 기록의 원천이며 지식의 자원이다. 전자적 시스템을 통한 행정 행위가 보편화된 이후 당연히 데이터에 기반한 기록의 생산과 기술이 확대되고 진화하고 있다. 기술은 가치중립적인 듯 보이지만 사실 그 자체로 특정 세계관을 반영하고 있다. 더구나 비물질적 유통을 기반으로 하는 디지털 세계, 온라인 네트워크의 또 다른 아이러니는 반드시 물리적 도구를 통해서만 접속하고 접촉할 수 있다는 점이다. 디지털 정보는 논리적 대상이지만 반드시 어떤 유형이든 그것을 중계할 장치 없이는 디지털 자원을 읽어 내거나 활용할 수 없다. 초연결, 초지능을 무기로 하는 새로운 기술의 디지털 질서는 전통적인 권력 구조에 깊은 영향력을 끼칠 뿐만 아니라 기존의 정보 및 지식 전달 매개체에도 마찬가지의 영향을 미치고 있다. 더구나 데이터에 기반한 생성형 인공지능을 비롯해 새로운 기술과 매개가 단연 화두다. 디지털 기술의 전방위적 성장과 확산이 인간 역능의 증강과 사유의 외주화 상황까지 왔다고 볼 수 있을 것이다. 여기에는 딥 페이크를 비롯한 가짜 이미지, 오토 프로파일링, 사실처럼 생성해 내는 AI 거짓말(hallucination), 기계 학습데이터의 저작권 침해에 이르기까지 다양한 문제점 또한 내포하고 있다. 더구나 급진적 연결 능력은 방대한 데이터의 즉각적 공유를 가능하게 하고 인지 없이 행위를 발생시키는 기술적 무의식에 의존하게 된다. 그런 점에서 지금의 기술 사회의 기계는 단순 보조의 수준을 넘어서고 있으며 기계의 인간 사회 진입은 고도의 기술 발전에 따른 자연적인 변화 양상이라고 하기에는 간단하지 않은 지점이 존재한다. 시간이 지나며 기계에 대한 관점이 변화하게 될 것이기 때문이다. 따라서 중요한 것은 기계를 통한 커뮤니케이션, 행위의 결과로서의 기록이 생산되고 사용되는 방식의 변화가 의미하는 사회문화적 함의에 있다. 아카이브 영역에서도 초지능, 초연결사회를 향한 기술의 변화로 인해 데이터 기반 아카이브 사회는 어떤 문제에 직면하게 될 것인지, 그리고 그 속에서 누가 어떻게 기록과 데이터의 지속적 활동성을 입증하고 매체 변화의 주요 동인이 될 것인가에 대한 연구가 필요한 시점이다. 본 연구는 아카이브가 행위의 결과인 기록뿐만 아니라 데이터를 전략적 자산으로 인식할 필요성에서 시작했다. 이를 통해 전통적 경계를 확장하고 데이터 중심 사회에서 어떻게 재영토화를 이룰 수 있을지를 알아보았다.

인구통계특성 기반 디지털 마케팅을 위한 클릭스트림 빅데이터 마이닝 (Clickstream Big Data Mining for Demographics based Digital Marketing)

  • 박지애;조윤호
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.143-163
    • /
    • 2016
  • 인구통계학적 정보는 디지털 마케팅의 핵심이라 할 수 있는 인터넷 사용자에 대한 타겟 마케팅 및 개인화된 광고를 위해 고려되는 가장 기초적이고 중요한 정보이다. 하지만 인터넷 사용자의 온라인 활동은 익명으로 행해지는 경우가 많기 때문에 인구통계특성 정보를 수집하는 것은 쉬운 일이 아니다. 정기적인 설문 조사를 통해 사용자들의 인구통계특성 정보를 수집할 수도 있지만 많은 비용이 들며 허위 기재 등과 같은 위험성이 존재한다. 특히, 모바일 환경에서는 대부분의 사용자들이 익명으로 활동하기 때문에 인구통계특성 정보를 수집하는 것은 더욱 더 어려워지고 있다. 반면, 인터넷 사용자의 온라인 활동을 기록한 클릭스트림 데이터는 해당 사용자의 인구통계학적 정보에 활용될 수 있다. 특히, 인터넷 사용자의 온라인 행위 특성 중 하나인 페이지뷰는 인구통계학적 정보 예측에 있어서 중요한 요인이 된다. 본 연구에서는 기존 선행 연구를 토대로 클릭스트림 데이터 분석을 통해 인터넷 사용자의 온라인 행위 특성을 추출하고 이를 해당 사용자의 인구통계학적 정보 예측에 사용한다. 또한, 1)의사결정나무를 이용한 변수 축소, 2)주성분분석을 활용한 차원축소, 3)군집분석을 활용한 변수축소의 방법을 제안하고 실험에 적용함으로써 많은 설명변수를 이용하여 예측 모델 생성 시 발생하는 차원의 저주와 과적합 문제를 해결하고 예측 모델의 정확도를 높이고자 하였다. 실험 결과, 범주의 수가 많은 다분형 종속변수에 대한 예측 모델은 모든 설명변수를 사용하여 예측 모델을 생성했을 때보다 본 연구에서 제안한 방법론들을 적용했을 때 예측 모델에 대한 정확도가 향상됨을 알 수 있었다. 본 연구는 클릭스트림 분석을 통해 추출된 인터넷 사용자의 온라인 행위는 해당 사용자의 인구통계학적 정보 예측에 활용 가능하며, 예측된 익명의 인터넷 사용자들에 대한 인구통계학적 정보를 디지털 마케팅에 활용 할 수 있다는데 의의가 있다. 또한, 제안 방법론들을 통해 어느 종속변수에 대해 어떤 방법론들이 예측 모델의 정확도를 개선하는지 확인하였다. 이는 추후 클릭스트림 분석을 활용하여 인구통계학적 정보를 예측할 때, 본 연구에서 제안한 방법론을 사용하여 보다 높은 정확도를 가지는 예측 모델을 생성 할 수 있다는데 의의가 있다.

4차 산업혁명 시대의 사물인터넷 산업 발전전략에 관한 연구: 기업측면의 비즈니스 모델혁신 방향을 중심으로 (A Study on the Strategy of IoT Industry Development in the 4th Industrial Revolution: Focusing on the direction of business model innovation)

  • 정민의;유성진
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.57-75
    • /
    • 2019
  • 본 논문에서는 4차 산업혁명 핵심기술 중 가장 활발하게 산업화가 진행되고 있는 사물인터넷 산업을 대상으로 비즈모델 혁신방향 중심의 연구를 수행하였다. 글로벌 트렌드 분석을 위해 PEST분석을 활용하여 정책적, 경제적, 사회적, 기술적 이슈를 도출하였고, Gartner, International Data Corporation 등 ICT관련 조사 분석기관의 사물인터넷산업에 대한 미래전망을 제시하였는데, 사물인터넷은 인프라 및 플랫폼을 기반으로 산업인터넷(IIoT), 소물인터넷(IoST) 등으로 네트워크 기술경쟁이 이슈가 될 것으로 전망하였다. 4차 산업혁명으로 인해 급변하는 산업계에 대응하기 위해 기존의 비즈니스 모델 혁신을 위한 다양한 경영학적 방법론들을 검토하였고, '적용성', '민첩성', '다양성', '연계성' 4가지 기준을 가지고 전문가 설문조사를 수행하여 Business Model Canvas 모델이 비즈니스 모델 혁신 방법론으로 가장 적합하다는 AHP 분석결과를 도출하였다. Business Model Canvas는 비즈니스 모델 혁신을 위한 방법론으로 비교적 최근에 제시된 경영전략이며, 9개의 블록 접근 방식을 통해 비즈니스모델의 가치를 식별하며, 비즈니스의 4대 핵심 영역인 고객, 주문, 인프라, 사업타당성 분석 등을 포괄한다. 결론적으로 ICT융합산업 분야에서 어떠한 Business Model Canvas 모델을 방향으로 적용할지에 대한 고찰을 기술하였다.