• 제목/요약/키워드: Social Media Mining

검색결과 246건 처리시간 0.032초

소셜미디어 빅데이터의 텍스트 마이닝과 오피니언 마이닝 기법을 활용한 웹드라마 분석과 제안 (Webdrama Analysis and Recommendation using Text Mining and Opinion Mining Technique of Social Media)

  • 오세종;김치호
    • 만화애니메이션 연구
    • /
    • 통권44호
    • /
    • pp.285-306
    • /
    • 2016
  • 1인 스마트폰 사용으로 웹툰, 웹소설, TV드라마는 생산자에서 소비자에게 직접적으로 소비할 수 있는 Direct-to-Consumer로 전환되고 있다. 특히, 포털사이트의 웹드라마는 새로운 미디어로 급성장하고 있다. '연애세포', '0시의 그녀', '최고의 미래', '우리 옆집에 EXO가 산다' 등을 TV드라마의 시청률처럼 조회수, 유입자, 댓글, 좋아요 등으로 다양한 반응을 분석할 수 있다. 분석 방법은 소셜미디어 빅데이터의 텍스트 마이닝 기법과 오피니언 마이닝 기법으로 작품을 분석했다. 즉, 웹드라마 마다의 특정 키워드를 추출하고, 추출한 키워드의 긍정, 부정, 중립 등 시청자의 감정을 예측할 수도 있다. 주요 인기 웹드라마를 분석한 결과로는 이미 팬을 확보한 K-Pop 아이돌 멤버의 출현과 포털사이트의 편성 회사와의 연관성이 재생수, 유입자, 댓글, 좋아요에 큰 영향을 미치는 것으로 나타났다. 또한 TV 이외의 매체로 '모바일 TV'의 영향력을 증명하였다. 한계점으로는 모바일 특화 콘텐츠 확보와 비즈니스 모델을 정립하는 것이 필요하겠다. 이 부분을 해결한다면, 한국은 웹드라마의 콘텐츠 강국이라는 긍정적 이미지를 보여줄 수 있는 계기가 될 것이다.

소셜미디어와 빅 데이터 마이닝 기술을 이용한 청소년 관련문제 분석시스템 (An Youth-related Issues Analysis System Using Social Media and Big-data Mining Techniques)

  • 서지애;김창기;서정민
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2015년도 제52차 하계학술대회논문집 23권2호
    • /
    • pp.93-94
    • /
    • 2015
  • 본 논문에서는 학교 교육환경에서 청소년들에게 발생 할 수 있는소 셜미디어의 역기능을 빅 데이터 처리를 통하여 분석 할 수 있는 방법을 제시하고, 특히 악성 댓글을 위주로 한 청소년들 간의 소셜미디어를 중심으로 빅 데이터의 마이닝 기술을 활용하여 대표적인 청소년 문제의 확산을 방지 할 수 있는 시스템 제안한다.

  • PDF

데이터 분석 기반 미래 신기술의 사회적 위험 예측과 위험성 평가 (Data Analytics for Social Risk Forecasting and Assessment of New Technology)

  • 서용윤
    • 한국안전학회지
    • /
    • 제32권3호
    • /
    • pp.83-89
    • /
    • 2017
  • A new technology has provided the nation, industry, society, and people with innovative and useful functions. National economy and society has been improved through this technology innovation. Despite the benefit of technology innovation, however, since technology society was sufficiently mature, the unintended side effect and negative impact of new technology on society and human beings has been highlighted. Thus, it is important to investigate a risk of new technology for the future society. Recently, the risks of the new technology are being suggested through a large amount of social data such as news articles and report contents. These data can be used as effective sources for quantitatively and systematically forecasting social risks of new technology. In this respect, this paper aims to propose a data-driven process for forecasting and assessing social risks of future new technology using the text mining, 4M(Man, Machine, Media, and Management) framework, and analytic hierarchy process (AHP). First, social risk factors are forecasted based on social risk keywords extracted by the text mining of documents containing social risk information of new technology. Second, the social risk keywords are classified into the 4M causes to identify the degree of risk causes. Finally, the AHP is applied to assess impact of social risk factors and 4M causes based on social risk keywords. The proposed approach is helpful for technology engineers, safety managers, and policy makers to consider social risks of new technology and their impact.

코로나-19 이전과 이후 식생활 관련 제로웨이스트 운동 양상과 소비자 반응 비교 (A Comparative Study of Dietary Related Zero-waste Patterns and Consumer Responses Before and After COVID-19)

  • 박인형;박유민;이철;선정은;호문접;정재은
    • Human Ecology Research
    • /
    • 제60권1호
    • /
    • pp.21-38
    • /
    • 2022
  • This study uses text mining compares and contrasts consumers' social media discourses on dietary related zero-waste movement before and after COVID-19. The results indicate that the amount of buzz on social networks for the zero- waste movement has been increasing after COVID-19. Additionally, the results of frequency analysis and topic modeling revealed that subjects associated with zero-waste movement were more diversified after COVID-19. Although the results of a sentiment analysis and word cloud visualization confirmed that consumers' positive responses toward the zero-waste have been increasing, they also revealed a need to educate and encourage those who are still not aware of the need for zero-waste. Finally, consumers mentioned only a small number of companies participating in zero-waste movement on SNS, indicating that the level of active involvement by such companies is much lower than that of consumers. Theoretical and educational implications as well as those for government policy-making are considered.

Z세대 패션에 대한 소셜미디어의 빅데이터 분석 (Social media big data analysis of Z-generation fashion)

  • 성광숙
    • 한국의상디자인학회지
    • /
    • 제22권3호
    • /
    • pp.49-61
    • /
    • 2020
  • This study analyzed the social media accounts and performed a Big Data analysis of Z-generation fashion using Textom Text Mining Techniques program and Ucinet Big Data analysis program. The research results are as follows: First, as a result of keyword analysis on 67.646 Z-generation fashion social media posts over the last 5 years, 220,211 keywords were extracted. Among them, 67 major keywords were selected based on the frequency of co-occurrence being greater than more than 250 times. As the top keywords appearing over 1000 times, were the most influential as the number of nodes connected to 'Z generation' (29595 times) are overwhelmingly, and was followed by 'millennials'(18536 times), 'fashion'(17836 times), and 'generation'(13055 times), 'brand'(8325 times) and 'trend'(7310 times) Second, as a result of the analysis of Network Degree Centrality between the key keywords for the Z-generation, the number of nodes connected to the "Z-generation" (29595 times) is overwhelmingly large. Next, many 'millennial'(18536 times), 'fashion'(17836 times), 'generation'(13055 times), 'brand'(8325 times), 'trend'(7310 times), etc. appear. These texts are considered to be important factors in exploring the reaction of social media to the Z-generation. Third, through the analysis of CONCOR, text with the structural equivalence between major keywords for Gen Z fashion was rearranged and clustered. In addition, four clusters were derived by grouping through network semantic network visualization. Group 1 is 54 texts, 'Diverse Characteristics of Z-Generation Fashion Consumers', Group 2 is 7 Texts, 'Z-Generation's teenagers Fashion Powers', Group 3 is 8 Texts, 'Z-Generation's Celebrity Fashions' Interest and Fashion', Group 4 named 'Gucci', the most popular luxury fashion of the Z-generation as one text.

Emotional analysis system for social media using sentiment dictionary with newly-created words

  • Shin, Pan-Seop
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권4호
    • /
    • pp.133-140
    • /
    • 2020
  • 감성분석은 비정형 텍스트에 나타나는 사람들의 의견이나 성향 등을 분석하는 오피니언 마이닝의 응용 분야이다. 최근에는 소셜미디어에 대한 감성분석이 주목받고 있으나 소셜미디어에는 신조어, 속어 등이 포함되어있어 기존 감성분석으로는 분석이 쉽지 않다. 본 연구에서는, 이러한 문제점을 해결하기 위해, 새로운 감성분석 시스템을 설계한다. 제안 시스템은 신조어, 속어 등이 포함된 소셜미디어에서도 긍/부정 뿐만아니라 다양한 감성분석이 가능하다. 먼저, 현재 소셜미디어에서 많이 나타나는 감성관련 신조어와 속어 등을 수집한다. 그리고 나서, 기존의 감성모델을 확장하고 이를 활용하여 감성단어에 감성정도를 수치화 한다. 또한 감성정도를 반영하여 새로운 감성단어 사전을 구축한다. 최종적으로, 신조어가 포함된 감성사전과 확장된 감성모델을 적용한 감성분석시스템을 설계한다.

A proof-of-concept study of extracting patient histories for rare/intractable diseases from social media

  • Yamaguchi, Atsuko;Queralt-Rosinach, Nuria
    • Genomics & Informatics
    • /
    • 제18권2호
    • /
    • pp.17.1-17.4
    • /
    • 2020
  • The amount of content on social media platforms such as Twitter is expanding rapidly. Simultaneously, the lack of patient information seriously hinders the diagnosis and treatment of rare/intractable diseases. However, these patient communities are especially active on social media. Data from social media could serve as a source of patient-centric knowledge for these diseases complementary to the information collected in clinical settings and patient registries, and may also have potential for research use. To explore this question, we attempted to extract patient-centric knowledge from social media as a task for the 3-day Biomedical Linked Annotation Hackathon 6 (BLAH6). We selected amyotrophic lateral sclerosis and multiple sclerosis as use cases of rare and intractable diseases, respectively, and we extracted patient histories related to these health conditions from Twitter. Four diagnosed patients for each disease were selected. From the user timelines of these eight patients, we extracted tweets that might be related to health conditions. Based on our experiment, we show that our approach has considerable potential, although we identified problems that should be addressed in future attempts to mine information about rare/intractable diseases from Twitter.

Topic Modeling Analysis of Social Media Marketing using BERTopic and LDA

  • YANG, Woo-Ryeong;YANG, Hoe-Chang
    • 산경연구논집
    • /
    • 제13권9호
    • /
    • pp.37-50
    • /
    • 2022
  • Purpose: The purpose of this study is to explore and compare research trends in Korea and overseas academic papers on social media marketing, and to present new academic perspectives for the future direction in Korea. Research design, data and methodology: We used English abstract of research paper (Korea's: 1,349, overseas': 5,036) for word frequency analysis, topic modeling, and trend analysis for each topic. Results: The results of word frequency and co-occurrence frequency analysis showed that Korea researches focused on the experiential values of users, and overseas researches focused on platforms and content. Next, 13 topics and 12 topics for Korea and overseas researches were derived from topic modeling. And, trend analysis showed that Korean studies were different from overseas in applying marketing methods to specific industries and they were interested in the short-term performance of social media marketing. Conclusions: We found that the long-term strategies of social media marketing and academic interest in the overall industry will necessary in the future researches. Also, data mining techniques will necessary to generate more general results by quantifying various phenomena in reality. Finally, we expected that continuous and various academic approaches for volatile social media is effective to derive practical implications.

Insights Discovery through Hidden Sentiment in Big Data: Evidence from Saudi Arabia's Financial Sector

  • PARK, Young-Eun;JAVED, Yasir
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권6호
    • /
    • pp.457-464
    • /
    • 2020
  • This study aims to recognize customers' real sentiment and then discover the data-driven insights for strategic decision-making in the financial sector of Saudi Arabia. The data was collected from the social media (Facebook and Twitter) from start till October 2018 in financial companies (NCB, Al Rajhi, and Bupa) selected in the Kingdom of Saudi Arabia according to criteria. Then, it was analyzed using a sentiment analysis, one of data mining techniques. All three companies have similar likes and followers as they serve customers as B2B and B2C companies. In addition, for Al Rajhi no negative sentiment was detected in English posts, while it can be seen that Internet penetration of both banks are higher than BUPA, rarely mentioned in few hours. This study helps to predict the overall popularity as well as the perception or real mood of people by identifying the positive and negative feelings or emotions behind customers' social media posts or messages. This research presents meaningful insights in data-driven approaches using a specific data mining technique as a tool for corporate decision-making and forecasting. Understanding what the key issues are from customers' perspective, it becomes possible to develop a better data-based global strategies to create a sustainable competitive advantage.

An Enhanced Text Mining Approach using Ensemble Algorithm for Detecting Cyber Bullying

  • Z.Sunitha Bai;Sreelatha Malempati
    • International Journal of Computer Science & Network Security
    • /
    • 제23권5호
    • /
    • pp.1-6
    • /
    • 2023
  • Text mining (TM) is most widely used to process the various unstructured text documents and process the data present in the various domains. The other name for text mining is text classification. This domain is most popular in many domains such as movie reviews, product reviews on various E-commerce websites, sentiment analysis, topic modeling and cyber bullying on social media messages. Cyber-bullying is the type of abusing someone with the insulting language. Personal abusing, sexual harassment, other types of abusing come under cyber-bullying. Several existing systems are developed to detect the bullying words based on their situation in the social networking sites (SNS). SNS becomes platform for bully someone. In this paper, An Enhanced text mining approach is developed by using Ensemble Algorithm (ETMA) to solve several problems in traditional algorithms and improve the accuracy, processing time and quality of the result. ETMA is the algorithm used to analyze the bullying text within the social networking sites (SNS) such as facebook, twitter etc. The ETMA is applied on synthetic dataset collected from various data a source which consists of 5k messages belongs to bullying and non-bullying. The performance is analyzed by showing Precision, Recall, F1-Score and Accuracy.