• Title/Summary/Keyword: Social Media Mining

Search Result 246, Processing Time 0.026 seconds

Construction of Event Networks from Large News Data Using Text Mining Techniques (텍스트 마이닝 기법을 적용한 뉴스 데이터에서의 사건 네트워크 구축)

  • Lee, Minchul;Kim, Hea-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.183-203
    • /
    • 2018
  • News articles are the most suitable medium for examining the events occurring at home and abroad. Especially, as the development of information and communication technology has brought various kinds of online news media, the news about the events occurring in society has increased greatly. So automatically summarizing key events from massive amounts of news data will help users to look at many of the events at a glance. In addition, if we build and provide an event network based on the relevance of events, it will be able to greatly help the reader in understanding the current events. In this study, we propose a method for extracting event networks from large news text data. To this end, we first collected Korean political and social articles from March 2016 to March 2017, and integrated the synonyms by leaving only meaningful words through preprocessing using NPMI and Word2Vec. Latent Dirichlet allocation (LDA) topic modeling was used to calculate the subject distribution by date and to find the peak of the subject distribution and to detect the event. A total of 32 topics were extracted from the topic modeling, and the point of occurrence of the event was deduced by looking at the point at which each subject distribution surged. As a result, a total of 85 events were detected, but the final 16 events were filtered and presented using the Gaussian smoothing technique. We also calculated the relevance score between events detected to construct the event network. Using the cosine coefficient between the co-occurred events, we calculated the relevance between the events and connected the events to construct the event network. Finally, we set up the event network by setting each event to each vertex and the relevance score between events to the vertices connecting the vertices. The event network constructed in our methods helped us to sort out major events in the political and social fields in Korea that occurred in the last one year in chronological order and at the same time identify which events are related to certain events. Our approach differs from existing event detection methods in that LDA topic modeling makes it possible to easily analyze large amounts of data and to identify the relevance of events that were difficult to detect in existing event detection. We applied various text mining techniques and Word2vec technique in the text preprocessing to improve the accuracy of the extraction of proper nouns and synthetic nouns, which have been difficult in analyzing existing Korean texts, can be found. In this study, the detection and network configuration techniques of the event have the following advantages in practical application. First, LDA topic modeling, which is unsupervised learning, can easily analyze subject and topic words and distribution from huge amount of data. Also, by using the date information of the collected news articles, it is possible to express the distribution by topic in a time series. Second, we can find out the connection of events in the form of present and summarized form by calculating relevance score and constructing event network by using simultaneous occurrence of topics that are difficult to grasp in existing event detection. It can be seen from the fact that the inter-event relevance-based event network proposed in this study was actually constructed in order of occurrence time. It is also possible to identify what happened as a starting point for a series of events through the event network. The limitation of this study is that the characteristics of LDA topic modeling have different results according to the initial parameters and the number of subjects, and the subject and event name of the analysis result should be given by the subjective judgment of the researcher. Also, since each topic is assumed to be exclusive and independent, it does not take into account the relevance between themes. Subsequent studies need to calculate the relevance between events that are not covered in this study or those that belong to the same subject.

Revisiting the cause of unemployment problem in Korea's labor market: The job seeker's interests-based topic analysis (취업준비생 토픽 분석을 통한 취업난 원인의 재탐색)

  • Kim, Jung-Su;Lee, Suk-Jun
    • Management & Information Systems Review
    • /
    • v.35 no.1
    • /
    • pp.85-116
    • /
    • 2016
  • The present study aims to explore the causes of employment difficulty on the basis of job applicant's interest from P-E (person-environment) fit perspective. Our approach relied on a textual analytic method to reveal insights from their situational interests in a job search during the change of labor market. Thus, to investigate the type of major interests and psychological responses, user-generated texts in a social community were collected for analysis between January 1, 2013 through December 31, 2015 by crawling the online-community in regard to job seeking and sharing information and opinions. The results of topic analysis indicated user's primary interests were divided into four types: perception of vocation expectation, employment pre-preparation behaviors, perception of labor market, and job-seeking stress. Specially, job applicants put mainly concerns of monetary reward and a form of employment, rather than their work values or career exploration, thus youth job applicants expressed their psychological responses using contextualized language (e.g., slang, vulgarisms) for projecting their unstable state under uncertainty in response to environmental changes. Additionally, they have perceived activities in the restricted preparation (e.g., certification, English exam) as determinant factors for success in employment and suffered form job-seeking stress. On the basis of these findings, current unemployment matters are totally attributed to the absence of pursing the value of vocation and job in individuals, organizations, and society. Concretely, job seekers are preoccupied with occupational prestige in social aspect and have undecided vocational value. On the other hand, most companies have no perception of the importance of human resources and have overlooked the needs for proper work environment development in respect of stimulating individual motivation. The attempt in this study to reinterpret the effect of environment as for classifying job applicant's interests in reference to linguistic and psychological theories not only helps conduct a more comprehensive meaning for understanding social matters, but guides new directions for future research on job applicant's psychological factors (e.g., attitudes, motivation) using topic analysis.

  • PDF

Evaluation of Preference by Bukhansan Dulegil Course Using Sentiment Analysis of Blog Data (블로그 데이터 감성분석을 통한 북한산둘레길 구간별 선호도 평가)

  • Lee, Sung-Hee;Son, Yong-Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.3
    • /
    • pp.1-10
    • /
    • 2021
  • This study aimed to evaluate preferences of Bukhansan dulegil using sentiment analysis, a natural language processing technique, to derive preferred and non-preferred factors. Therefore, we collected blog articles written in 2019 and produced sentimental scores by the derivation of positive and negative words in the texts for 21 dulegil courses. Then, content analysis was conducted to determine which factors led visitors to prefer or dislike each course. In blogs written about Bukhansan dulegil, positive words appeared in approximately 73% of the content, and the percentage of positive documents was significantly higher than that of negative documents for each course. Through this, it can be seen that visitors generally had positive sentiments toward Bukhansan dulegil. Nevertheless, according to the sentiment score analysis, all 21 dulegil courses belonged to both the preferred and non-preferred courses. Among courses, visitors preferred less difficult courses, in which they could walk without a burden, and in which various landscape elements (visual, auditory, olfactory, etc.) were harmonious yet distinct. Furthermore, they preferred courses with various landscapes and landscape sequences. Additionally, visitors appreciated the presence of viewpoints, such as observation decks, as a significant factor and preferred courses with excellent accessibility and information provisions, such as information boards. Conversely, the dissatisfaction with the dulegil courses was due to noise caused by adjacent roads, excessive urban areas, and the inequality or difficulty of the course which was primarily attributed to insufficient information on the landscape or section of the course. The results of this study can serve not only serve as a guide in national parks but also in the management of nearby forest green areas to formulate a plan to repair and improve dulegil. Further, the sentiment analysis used in this study is meaningful in that it can continuously monitor actual users' responses towards natural areas. However, since it was evaluated based on a predefined sentiment dictionary, continuous updates are needed. Additionally, since there is a tendency to share positive content rather than negative views due to the nature of social media, it is necessary to compare and review the results of analysis, such as with on-site surveys.

A Study on the Landscape Cognition of Wind Power Plant in Social Media (소셜미디어에 나타난 풍력발전시설의 경관 인식 연구)

  • Woo, Kyung-Sook;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.5
    • /
    • pp.69-79
    • /
    • 2022
  • This study aims to assess the current understanding of the landscape of wind power facilities as renewable energy sources that supply sightseeing, tourism, and other opportunities. Therefore, social media data related to the landscape of wind power facilities experienced by visitors from different regions was analyzed. The analysis results showed that the common characteristics of the landscape of wind power facilities are based on the scale of wind power facilities, the distance between overlook points of wind power facilities, the visual openness of the wind power facilities from the overlook points, and the terrain where the wind power facilities are located. In addition, the preference for wind power facilities is higher in places where the shape of wind power facilities and the surrounding landscape can be clearly seen- flat ground or the sea are considered better landscapes. Negative keywords about the landscape appear on Gade Mountain in Taibai, Meifeng Mountain in Taibai, Taiqi Mountain, and Gyeongju Wind Power Generation Facilities on Gyeongshang Road in Gangwon. The keyword 'negation' occurs when looking at wind power facilities at close range. Because of the high angle of the view, viewers can feel overwhelmed seeing the size of the facility and the ridge simultaneously, feeling psychological pressure. On the contrary, positive landscape adjectives are obtained from wind power facilities on flat ground or the sea. Visitors think that the visual volume of the landscape is fully ensured on flat ground or the sea, and it is a symbolic element that can represent the site. This study analyzes landscape awareness based on the opinions of visitors who have experienced wind power facilities. However, wind power facilities are built in different areas. Therefore, landscape characteristics are different, and there are many variables, such as viewpoints and observers, so the research results are difficult to popularize and have limitations. In recent years, landscape damage due to the construction of wind power facilities has become a hot issue, and the domestic methods of landscape evaluation of wind power facilities are unsatisfactory. Therefore, when evaluating the landscape of wind power facilities, the scale of wind power facilities, the inherent natural characteristics of the area where wind power facilities are set up, and the distance between wind power facilities and overlook points are important elements to consider. In addition, wind power facilities are set in the natural environment, which needs to be protected. Therefore, from the landscape perspective, it is necessary to study the landscape of wind power facilities and the surrounding environment.

Analysis of Football Fans' Uniform Consumption: Before and After Son Heung-Min's Transfer to Tottenham Hotspur FC (국내 프로축구 팬들의 유니폼 소비 분석: 손흥민의 토트넘 홋스퍼 FC 이적 전후 비교)

  • Choi, Yeong-Hyeon;Lee, Kyu-Hye
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.91-108
    • /
    • 2020
  • Korea's famous soccer players are steadily performing well in international leagues, which led to higher interests of Korean fans in the international leagues. Reflecting the growing social phenomenon of rising interests on international leagues by Korean fans, the study examined the overall consumer perception in the consumption of uniform by domestic soccer fans and compared the changes in perception following the transfers of the players. Among others, the paper examined the consumer perception and purchase factors of soccer fans shown in social media, focusing on periods before and after the recruitment of Heung-Min Son to English Premier League's Tottenham Football Club. To this end, the EPL uniform is the collection keyword the paper utilized and collected consumer postings from domestic website and social media via Python 3.7, and analyzed them using Ucinet 6, NodeXL 1.0.1, and SPSS 25.0 programs. The results of this study can be summarized as follows. First, the uniform of the club that consistently topped the league, has been gaining attention as a popular uniform, and the players' performance, and the players' position have been identified as key factors in the purchase and search of professional football uniforms. In the case of the club, the actual ranking and whether the league won are shown to be important factors in the purchase and search of professional soccer uniforms. The club's emblem and the sponsor logo that will be attached to the uniform are also factors of interest to consumers. In addition, in the decision making process of purchase of a uniform by professional soccer fan, uniform's form, marking, authenticity, and sponsors are found to be more important than price, design, size, and logo. The official online store has emerged as a major purchasing channel, followed by gifts for friends or requests from acquaintances when someone travels to the United Kingdom. Second, a classification of key control categories through the convergence of iteration correlation analysis and Clauset-Newman-Moore clustering algorithm shows differences in the classification of individual groups, but groups that include the EPL's club and player keywords are identified as the key topics in relation to professional football uniforms. Third, between 2002 and 2006, the central theme for professional football uniforms was World Cup and English Premier League, but from 2012 to 2015, the focus has shifted to more interest of domestic and international players in the English Premier League. The subject has changed to the uniform itself from this time on. In this context, the paper can confirm that the major issues regarding the uniforms of professional soccer players have changed since Ji-Sung Park's transfer to Manchester United, and Sung-Yong Ki, Chung-Yong Lee, and Heung-Min Son's good performances in these leagues. The paper also identified that the uniforms of the clubs to which the players have transferred to are of interest. Fourth, both male and female consumers are showing increasing interest in Son's league, the English Premier League, which Tottenham FC belongs to. In particular, the increasing interest in Son has shown a tendency to increase interest in football uniforms for female consumers. This study presents a variety of researches on sports consumption and has value as a consumer study by identifying unique consumption patterns. It is meaningful in that the accuracy of the interpretation has been enhanced by using a cluster analysis via convergence of iteration correlation analysis and Clauset-Newman-Moore clustering algorithm to identify the main topics. Based on the results of this study, the clubs will be able to maximize its profits and maintain good relationships with fans by identifying key drivers of consumer awareness and purchasing for professional soccer fans and establishing an effective marketing strategy.

Reliability Analysis of VOC Data for Opinion Mining (오피니언 마이닝을 위한 VOC 데이타의 신뢰성 분석)

  • Kim, Dongwon;Yu, Song Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.217-245
    • /
    • 2016
  • The purpose of this study is to verify how 7 sentiment domains extracted through sentiment analysis from social media have an influence on business performance. It consists of three phases. In phase I, we constructed the sentiment lexicon after crawling 45,447 pieces of VOC (Voice of the Customer) on 26 auto companies from the car community and extracting the POS information and built a seven-sensitive domains. In phase II, in order to retain the reliability of experimental data, we examined auto-correlation analysis and PCA. In phase III, we investigated how 7 domains impact on the market share of three major (GM, FCA, and VOLKSWAGEN) auto companies by using linear regression analysis. The findings from the auto-correlation analysis proved auto-correlation and the sequence of the sentiments, and the results from PCA reported the 7 sentiments connected with positivity, negativity and neutrality. As a result of linear regression analysis on model 1, we indentified that the sentimental factors have a significant influence on the actual market share. In particular, not only posotive and negative sentiment domains, but neutral sentiment had significantly impacted on auto market share. As we apply the availability of data to the market, and take advantage of auto-correlation of the market-related information and the sentiment, the findings will be a huge contribution to other researches on sentiment analysis as well as actual business performances in various ways.

Analyzing the Effect of Characteristics of Dictionary on the Accuracy of Document Classifiers (용어 사전의 특성이 문서 분류 정확도에 미치는 영향 연구)

  • Jung, Haegang;Kim, Namgyu
    • Management & Information Systems Review
    • /
    • v.37 no.4
    • /
    • pp.41-62
    • /
    • 2018
  • As the volume of unstructured data increases through various social media, Internet news articles, and blogs, the importance of text analysis and the studies are increasing. Since text analysis is mostly performed on a specific domain or topic, the importance of constructing and applying a domain-specific dictionary has been increased. The quality of dictionary has a direct impact on the results of the unstructured data analysis and it is much more important since it present a perspective of analysis. In the literature, most studies on text analysis has emphasized the importance of dictionaries to acquire clean and high quality results. However, unfortunately, a rigorous verification of the effects of dictionaries has not been studied, even if it is already known as the most essential factor of text analysis. In this paper, we generate three dictionaries in various ways from 39,800 news articles and analyze and verify the effect each dictionary on the accuracy of document classification by defining the concept of Intrinsic Rate. 1) A batch construction method which is building a dictionary based on the frequency of terms in the entire documents 2) A method of extracting the terms by category and integrating the terms 3) A method of extracting the features according to each category and integrating them. We compared accuracy of three artificial neural network-based document classifiers to evaluate the quality of dictionaries. As a result of the experiment, the accuracy tend to increase when the "Intrinsic Rate" is high and we found the possibility to improve accuracy of document classification by increasing the intrinsic rate of the dictionary.

Development of big data based Skin Care Information System SCIS for skin condition diagnosis and management

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.137-147
    • /
    • 2022
  • Diagnosis and management of skin condition is a very basic and important function in performing its role for workers in the beauty industry and cosmetics industry. For accurate skin condition diagnosis and management, it is necessary to understand the skin condition and needs of customers. In this paper, we developed SCIS, a big data-based skin care information system that supports skin condition diagnosis and management using social media big data for skin condition diagnosis and management. By using the developed system, it is possible to analyze and extract core information for skin condition diagnosis and management based on text information. The skin care information system SCIS developed in this paper consists of big data collection stage, text preprocessing stage, image preprocessing stage, and text word analysis stage. SCIS collected big data necessary for skin diagnosis and management, and extracted key words and topics from text information through simple frequency analysis, relative frequency analysis, co-occurrence analysis, and correlation analysis of key words. In addition, by analyzing the extracted key words and information and performing various visualization processes such as scatter plot, NetworkX, t-SNE, and clustering, it can be used efficiently in diagnosing and managing skin conditions.

A Study on the Analysis of Park User Experiences in Phase 1 and 2 Korea's New Towns with Blog Text Data (블로그 텍스트 데이터를 활용한 1, 2기 신도시 공원의 이용자 경험 분석 연구)

  • Sim, Jooyoung;Lee, Minsoo;Choi, Hyeyoung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.3
    • /
    • pp.89-102
    • /
    • 2024
  • This study aims to examine the characteristics of the user experience of New Town neighborhood parks and explore issues that diversify the experience of the parks. In order to quantitatively analyze a large amount of park visitors' experiences, text-based Naver blog reviews were collected and analyzed. Among the Phase 1 and 2 New Towns, the parks with the highest user experience postings were selected for each city as the target of analysis. Blog text data was collected from May 20, 2003, to May 31, 2022, and analysis was conducted targeting Ilsan Lake Park, Bundang Yuldong Park, Gwanggyo Lake Park, and Dongtan Lake Park. The findings revealed that all four parks were used for everyday relaxation and recreation. Second, the analysis underscores park's diverse user groups. Third, the programs for parks nearby were also related to park usage. Fourth, the words within the top 20 rankings represented distinctive park elements or content/programs specific to each park. Lastly, the results of the network analysis delineated four overarching types of park users and the networks of four park user types appeared differently depending on the park. This study provides two implications. First, in addition to the naturalistic characteristics, the differentiation of each park's unique facilities and programs greatly improves public awareness and enriches the individual park experience. Second, if analysis of the context surrounding the park based on spatial information is performed in addition to text analysis, the accuracy of interpretation of text data analysis results could be improved. The results of this study can be used in the planning and designing of parks and greenspaces in the Phase 3 New Towns currently in progress.

A study on detective story authors' style differentiation and style structure based on Text Mining (텍스트 마이닝 기법을 활용한 고전 추리 소설 작가 간 문체적 차이와 문체 구조에 대한 연구)

  • Moon, Seok Hyung;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.89-115
    • /
    • 2019
  • This study was conducted to present the stylistic differences between Arthur Conan Doyle and Agatha Christie, famous as writers of classical mystery novels, through data analysis, and further to present the analytical methodology of the study of style based on text mining. The reason why we chose mystery novels for our research is because the unique devices that exist in classical mystery novels have strong stylistic characteristics, and furthermore, by choosing Arthur Conan Doyle and Agatha Christie, who are also famous to the general reader, as subjects of analysis, so that people who are unfamiliar with the research can be familiar with them. The primary objective of this study is to identify how the differences exist within the text and to interpret the effects of these differences on the reader. Accordingly, in addition to events and characters, which are key elements of mystery novels, the writer's grammatical style of writing was defined in style and attempted to analyze it. Two series and four books were selected by each writer, and the text was divided into sentences to secure data. After measuring and granting the emotional score according to each sentence, the emotions of the page progress were visualized as a graph, and the trend of the event progress in the novel was identified under eight themes by applying Topic modeling according to the page. By organizing co-occurrence matrices and performing network analysis, we were able to visually see changes in relationships between people as events progressed. In addition, the entire sentence was divided into a grammatical system based on a total of six types of writing style to identify differences between writers and between works. This enabled us to identify not only the general grammatical writing style of the author, but also the inherent stylistic characteristics in their unconsciousness, and to interpret the effects of these characteristics on the reader. This series of research processes can help to understand the context of the entire text based on a defined understanding of the style, and furthermore, by integrating previously individually conducted stylistic studies. This prior understanding can also contribute to discovering and clarifying the existence of text in unstructured data, including online text. This could help enable more accurate recognition of emotions and delivery of commands on an interactive artificial intelligence platform that currently converts voice into natural language. In the face of increasing attempts to analyze online texts, including New Media, in many ways and discover social phenomena and managerial values, it is expected to contribute to more meaningful online text analysis and semantic interpretation through the links to these studies. However, the fact that the analysis data used in this study are two or four books by author can be considered as a limitation in that the data analysis was not attempted in sufficient quantities. The application of the writing characteristics applied to the Korean text even though it was an English text also could be limitation. The more diverse stylistic characteristics were limited to six, and the less likely interpretation was also considered as a limitation. In addition, it is also regrettable that the research was conducted by analyzing classical mystery novels rather than text that is commonly used today, and that various classical mystery novel writers were not compared. Subsequent research will attempt to increase the diversity of interpretations by taking into account a wider variety of grammatical systems and stylistic structures and will also be applied to the current frequently used online text analysis to assess the potential for interpretation. It is expected that this will enable the interpretation and definition of the specific structure of the style and that various usability can be considered.