Canlin Li;Shun Song;Pengcheng Gao;Wei Huang;Lihua Bi
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.4
/
pp.980-997
/
2024
To improve the brightness of images and reveal hidden information in dark areas is the main objective of low-light image enhancement (LLIE). LLIE methods based on deep learning show good performance. However, there are some limitations to these methods, such as the complex network model requires highly configurable environments, and deficient enhancement of edge details leads to blurring of the target content. Single-scale feature extraction results in the insufficient recovery of the hidden content of the enhanced images. This paper proposed an edge detection-based multi-scale feature enhancement network for LLIE (EDMFEN). To reduce the loss of edge details in the enhanced images, an edge extraction module consisting of a Sobel operator is introduced to obtain edge information by computing gradients of images. In addition, a multi-scale feature enhancement module (MSFEM) consisting of multi-scale feature extraction block (MSFEB) and a spatial attention mechanism is proposed to thoroughly recover the hidden content of the enhanced images and obtain richer features. Since the fused features may contain some useless information, the MSFEB is introduced so as to obtain the image features with different perceptual fields. To use the multi-scale features more effectively, a spatial attention mechanism module is used to retain the key features and improve the model performance after fusing multi-scale features. Experimental results on two datasets and five baseline datasets show that EDMFEN has good performance when compared with the stateof-the-art LLIE methods.
Because of the high energy of the treatment beam, contrast of portal films is very poor. Many image processing techniques have been applied to the portal images but a significant drawback is the loss of definition on the edges of the treatment field. Analysis of this problem shows that it may be remedied by separating the treatment field from the background prior to enhancement and uslng only the pixels within the field boundary in the enhancement procedure. A new edge extraction algorithm for accurate extraction of the radiation field boundary from portal Images has been developed for contrast enhancement of portal images. In this paper, portal image segmentation algorithm based on Sobel filtration, labelling processes and morphological thinning has been presented. This algorithm could automatically search the optimal threshold value which is sensitive to the variation of the type and quality of portal images.
Proceedings of the Korea Multimedia Society Conference
/
2002.11b
/
pp.159-162
/
2002
영상분석의 한 분야로서 에지 검출을 이용하는 많은 분야가 있다. 영상의 에지는 입력 영상에 대한 많은 정보를 제공해 준다. 본 논문에서는 입력영상에 대한 에지검출을 통한 윤곽선 추출을 하여 각각의 픽셀에 대한 에지검출 결과값을 비교하였다. 입력영상으로는 얼굴이미지를 사용하였으며 서로 다른 이미지에 대한 Sobel Filter의 검출의 결과 데이터를 각 픽셀마다 비교함으로써 원영상에 대한 동일인임을 판단하는 기준을 제시하였다.
Proceedings of the Korea Multimedia Society Conference
/
2003.11a
/
pp.249-252
/
2003
본 논문은 컬러 영상을 명암도에 따른 공간적 객체 분할인 YIQ 모델을 사용하여 객체 분할한 영상의 임계값에 따른 적응적 형태학을 이용하여 영상의 경계면을 레벨 업시킨 후, 이를 웨이브렛에 적용하여 최적의 에지를 검출하였다. 또한, 흑백 영상보다 더 많은 더 정보를 가진컬러 영상을 사용하여, 기존의 영상 에지 검출 알고리즘인 Sobel 에지 검출과 다른 웨이브렛기저 계수를 적용한 에지 검출 방법과 비교하고, 제안된 알고리즘이 기존의 다른 에지 검출보다 우수함을 확인하였다. 특히 에지와 에지의 부분이 가까울 때 정확한 에지를 검출하였으며, 완만한 곡선을 가지고 있는 부분에서 더 우수한 결과 에지를 얻을 수 있음을 확인하였다.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2000.08a
/
pp.337-340
/
2000
조명 및 반사광의 성질에 의해 블러링이 발생하고 이런 영상을 인식하는 경우 정확한 에지 검출이 어렵게 된다. 이를 최적으로 검출하기 위해 일정하게 에지를 검출할 수 있는 가우시안 함수와 2차 미분 함수를 합성한 새로운 하이브리드 함수를 제안하고 실제 영상과 컨볼루션 한 후 함수의 $\sigma$값을 변화시키면서, Canny 알고리즘의 방향성 에지 검출 방법을 적용하여 에지를 검출하였다. 그 결과 Sobel, Robert, Canny 에지 검출방법보다 0.2~14㏈ 정도 안정적으로 에지가 검출되었다.
Proceedings of the Korean Society of Computer Information Conference
/
2024.01a
/
pp.413-414
/
2024
영상 인식을 위한 학습 데이터 구성 단계에서 에지는 물체의 크기, 방향 등의 정보를 포함하고 있어 영상의 특징으로 사용한다. 본 논문에서는 얼굴 인식을 위하여 소벨 마스크를 사용하여 원영상과 압축영상 그리고 에지영상간의 학습에 따른 인식 정도를 파악하고자 한다. 실험결과, 원영상 그대로 인식하는 것보다 에지 영상에 의한 학습 속도에 차이가 있음을 알 수 있었다.
This paper describes a new face detection method that is a pre-processing algorithm for on-line face recognition. To complement the weakness of using only edge or rotor features from previous face detection method, we propose the two types of face detection method. The one is a combined method with edge and color features and the other is a center area color sampling method. To prevent connecting the people's face area and the background area, which have same colors, we propose a new adaptive edge detection algorithm firstly. The adaptive edge detection algorithm is robust to illumination variance so that it extracts lots of edges and breakouts edges steadily in border between background and face areas. Because of strong edge detection, face area appears one or multi regions. We can merge these isolated regions using color information and get the final face area as a MBR (Minimum Bounding Rectangle) form. If the size of final face area is under or upper threshold, color sampling method in center area from input image is used to detect new face area. To evaluate the proposed method, we have experimented with 2,100 face images. A high face detection rate of 96.3% has been obtained.
The Journal of the Korea institute of electronic communication sciences
/
v.5
no.3
/
pp.321-326
/
2010
A method that can decide the existence and the severeness of flaws in ceramic materials through the use of non-destructive testing by image processing techniques, is proposed in this paper. The edges of the acquired image are first extracted using Sobel mask and the regions of the image are clustered using another mask after that. Histogram stretching is applied to each of the regions to enhance the image region-wise and objects are extracted by an edge following algorithm. Morphological information is incorporated to remove noise and detect flawed regions. The proposed method can detect flaws in the acquired images and the experimental results also supports that.
Journal of the Korean Society for information Management
/
v.25
no.2
/
pp.49-68
/
2008
In many information retrieval experiments, the data fusion techniques have been used to achieve higher effectiveness in comparison to the single evidence-based retrieval. However, there had not been many image retrieval studies using the data fusion techniques especially in combining retrieval results based on multiple retrieval methods. In this paper, we describe how the image retrieval effectiveness can be improved by combining two sets of the retrieval results using the Sobel operator-based edge detection and the Self Organizing Map(SOM) algorithms. We used the clip art images from a commercial collection to develop a test data set. The main advantage of using this type of the data set was the clear cut relevance judgment, which did not require any human intervention.
NOAA/AVHRR data were used to analyze sea surface temperatures (SSTs) and thermal fronts (TFs) in the Korean seas. Temporal and spatial analyses were based on data from 1993 to 2000. Harmonic analysis revealed mean SST distributions of $10{\sim}25^{\circ}C$. Annual amplitudes and phases were $4{\sim}11^{\circ}C$ and $210{\sim}240^{\circ}$, respectively. Inverse distributions of annual amplitudes and phases were found for the study seas, with the exception of the East China Sea, which is affected by the Kuroshio Current. Areas with high amplitudes (large variations in SSTs) showed 'low phases' (early maximum SST); areas with low amplitudes (small variations in SSTs) had 'high phases' (late maximum SST). Empirical orthogonal function (EOF) analyses of SSTs revealed a first-mode variance of 97.6%. Annually, greater SST variations occurred closer to the continent. Temporal components of the second mode showed higher values in 1993, 1994, and 1995. These phenomena seemed to the effect of El $Ni{\tilde{n}}o$. The Sobel edge detection method (SEDM) delineated four fronts: the Subpolar Front (SPF) separating the northern and southern parts of the East Sea; the Kuroshio Front (KF) in the East China Sea, the South Sea Coastal Front (SSCF) in the South Sea, and a tidal front (TDF) in the West Sea. Thermal fronts generally occurred over steep bathymetric slopes. Annual amplitudes and phases were bounded within these frontal areas. EOF analysis of SST gradient values revealed the temporal and spatial variations in the TFs. The SPF and SSCF were most intense in March and October; the KF was most significant in March and May.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.