• Title/Summary/Keyword: Sobel Edge Detection

Search Result 145, Processing Time 0.025 seconds

EDMFEN: Edge detection-based multi-scale feature enhancement Network for low-light image enhancement

  • Canlin Li;Shun Song;Pengcheng Gao;Wei Huang;Lihua Bi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.980-997
    • /
    • 2024
  • To improve the brightness of images and reveal hidden information in dark areas is the main objective of low-light image enhancement (LLIE). LLIE methods based on deep learning show good performance. However, there are some limitations to these methods, such as the complex network model requires highly configurable environments, and deficient enhancement of edge details leads to blurring of the target content. Single-scale feature extraction results in the insufficient recovery of the hidden content of the enhanced images. This paper proposed an edge detection-based multi-scale feature enhancement network for LLIE (EDMFEN). To reduce the loss of edge details in the enhanced images, an edge extraction module consisting of a Sobel operator is introduced to obtain edge information by computing gradients of images. In addition, a multi-scale feature enhancement module (MSFEM) consisting of multi-scale feature extraction block (MSFEB) and a spatial attention mechanism is proposed to thoroughly recover the hidden content of the enhanced images and obtain richer features. Since the fused features may contain some useless information, the MSFEB is introduced so as to obtain the image features with different perceptual fields. To use the multi-scale features more effectively, a spatial attention mechanism module is used to retain the key features and improve the model performance after fusing multi-scale features. Experimental results on two datasets and five baseline datasets show that EDMFEN has good performance when compared with the stateof-the-art LLIE methods.

Automated radiation field edge detection in portal image using optimal threshold value (최적 문턱치 설정을 이용한 포탈영상에서의 자동 에지탐지 기법에 관한 연구)

  • 허수진
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.337-344
    • /
    • 1995
  • Because of the high energy of the treatment beam, contrast of portal films is very poor. Many image processing techniques have been applied to the portal images but a significant drawback is the loss of definition on the edges of the treatment field. Analysis of this problem shows that it may be remedied by separating the treatment field from the background prior to enhancement and uslng only the pixels within the field boundary in the enhancement procedure. A new edge extraction algorithm for accurate extraction of the radiation field boundary from portal Images has been developed for contrast enhancement of portal images. In this paper, portal image segmentation algorithm based on Sobel filtration, labelling processes and morphological thinning has been presented. This algorithm could automatically search the optimal threshold value which is sensitive to the variation of the type and quality of portal images.

  • PDF

A Study for Image Data Using Edge Detection (에지 검출을 이용한 영상자료에 관한 연구)

  • 신민화;최길환;배상현
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.159-162
    • /
    • 2002
  • 영상분석의 한 분야로서 에지 검출을 이용하는 많은 분야가 있다. 영상의 에지는 입력 영상에 대한 많은 정보를 제공해 준다. 본 논문에서는 입력영상에 대한 에지검출을 통한 윤곽선 추출을 하여 각각의 픽셀에 대한 에지검출 결과값을 비교하였다. 입력영상으로는 얼굴이미지를 사용하였으며 서로 다른 이미지에 대한 Sobel Filter의 검출의 결과 데이터를 각 픽셀마다 비교함으로써 원영상에 대한 동일인임을 판단하는 기준을 제시하였다.

  • PDF

A Study on Edge Detection using Adaptive Morphology Wavelet in YIQ Color model (YIQ 컬러 모델에서 적응적 형태학 웨이브렛 이용한 에지 검출 연구)

  • 백영현;문성룡
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.249-252
    • /
    • 2003
  • 본 논문은 컬러 영상을 명암도에 따른 공간적 객체 분할인 YIQ 모델을 사용하여 객체 분할한 영상의 임계값에 따른 적응적 형태학을 이용하여 영상의 경계면을 레벨 업시킨 후, 이를 웨이브렛에 적용하여 최적의 에지를 검출하였다. 또한, 흑백 영상보다 더 많은 더 정보를 가진컬러 영상을 사용하여, 기존의 영상 에지 검출 알고리즘인 Sobel 에지 검출과 다른 웨이브렛기저 계수를 적용한 에지 검출 방법과 비교하고, 제안된 알고리즘이 기존의 다른 에지 검출보다 우수함을 확인하였다. 특히 에지와 에지의 부분이 가까울 때 정확한 에지를 검출하였으며, 완만한 곡선을 가지고 있는 부분에서 더 우수한 결과 에지를 얻을 수 있음을 확인하였다.

  • PDF

The Characteristics of Edge Detection in Images by Local Scale Control (Local Scale 가변에 의한 영상의 에지 검출 특성)

  • 오승환;서경호;김태효
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.337-340
    • /
    • 2000
  • 조명 및 반사광의 성질에 의해 블러링이 발생하고 이런 영상을 인식하는 경우 정확한 에지 검출이 어렵게 된다. 이를 최적으로 검출하기 위해 일정하게 에지를 검출할 수 있는 가우시안 함수와 2차 미분 함수를 합성한 새로운 하이브리드 함수를 제안하고 실제 영상과 컨볼루션 한 후 함수의 $\sigma$값을 변화시키면서, Canny 알고리즘의 방향성 에지 검출 방법을 적용하여 에지를 검출하였다. 그 결과 Sobel, Robert, Canny 에지 검출방법보다 0.2~14㏈ 정도 안정적으로 에지가 검출되었다.

  • PDF

Learning Data Configuration by Edge Detection (경계선 검출에 의한 학습 데이터 구성)

  • Jae-Hyun Cho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.413-414
    • /
    • 2024
  • 영상 인식을 위한 학습 데이터 구성 단계에서 에지는 물체의 크기, 방향 등의 정보를 포함하고 있어 영상의 특징으로 사용한다. 본 논문에서는 얼굴 인식을 위하여 소벨 마스크를 사용하여 원영상과 압축영상 그리고 에지영상간의 학습에 따른 인식 정도를 파악하고자 한다. 실험결과, 원영상 그대로 인식하는 것보다 에지 영상에 의한 학습 속도에 차이가 있음을 알 수 있었다.

  • PDF

A New Face Detection Method using Combined Features of Color and Edge under the illumination Variance (컬러와 에지정보를 결합한 조명변화에 강인한 얼굴영역 검출방법)

  • 지은미;윤호섭;이상호
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.11
    • /
    • pp.809-817
    • /
    • 2002
  • This paper describes a new face detection method that is a pre-processing algorithm for on-line face recognition. To complement the weakness of using only edge or rotor features from previous face detection method, we propose the two types of face detection method. The one is a combined method with edge and color features and the other is a center area color sampling method. To prevent connecting the people's face area and the background area, which have same colors, we propose a new adaptive edge detection algorithm firstly. The adaptive edge detection algorithm is robust to illumination variance so that it extracts lots of edges and breakouts edges steadily in border between background and face areas. Because of strong edge detection, face area appears one or multi regions. We can merge these isolated regions using color information and get the final face area as a MBR (Minimum Bounding Rectangle) form. If the size of final face area is under or upper threshold, color sampling method in center area from input image is used to detect new face area. To evaluate the proposed method, we have experimented with 2,100 face images. A high face detection rate of 96.3% has been obtained.

Detection of Flaws in Ceramic Materials Using Non-Destructive Testing (비파괴 검사를 이용한 세라믹 재료의 결함 검출)

  • Kim, Kwang-Baek;Woo, Young-Woon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.3
    • /
    • pp.321-326
    • /
    • 2010
  • A method that can decide the existence and the severeness of flaws in ceramic materials through the use of non-destructive testing by image processing techniques, is proposed in this paper. The edges of the acquired image are first extracted using Sobel mask and the regions of the image are clustered using another mask after that. Histogram stretching is applied to each of the regions to enhance the image region-wise and objects are extracted by an edge following algorithm. Morphological information is incorporated to remove noise and detect flawed regions. The proposed method can detect flaws in the acquired images and the experimental results also supports that.

Content-based Image Retrieval Using Data Fusion Strategy (데이터 융합을 이용한 내용기반 이미지 검색에 관한 연구)

  • Paik, Woo-Jin;Jung, Sun-Eun;Kim, Gi-Young;Ahn, Eui-Gun;Shin, Moon-Sun
    • Journal of the Korean Society for information Management
    • /
    • v.25 no.2
    • /
    • pp.49-68
    • /
    • 2008
  • In many information retrieval experiments, the data fusion techniques have been used to achieve higher effectiveness in comparison to the single evidence-based retrieval. However, there had not been many image retrieval studies using the data fusion techniques especially in combining retrieval results based on multiple retrieval methods. In this paper, we describe how the image retrieval effectiveness can be improved by combining two sets of the retrieval results using the Sobel operator-based edge detection and the Self Organizing Map(SOM) algorithms. We used the clip art images from a commercial collection to develop a test data set. The main advantage of using this type of the data set was the clear cut relevance judgment, which did not require any human intervention.

Temporal and spatial analysis of SST and thermal fronts in the North East Asia Seas using NOAA/AVHRR data

  • Yoon, Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.831-835
    • /
    • 2006
  • NOAA/AVHRR data were used to analyze sea surface temperatures (SSTs) and thermal fronts (TFs) in the Korean seas. Temporal and spatial analyses were based on data from 1993 to 2000. Harmonic analysis revealed mean SST distributions of $10{\sim}25^{\circ}C$. Annual amplitudes and phases were $4{\sim}11^{\circ}C$ and $210{\sim}240^{\circ}$, respectively. Inverse distributions of annual amplitudes and phases were found for the study seas, with the exception of the East China Sea, which is affected by the Kuroshio Current. Areas with high amplitudes (large variations in SSTs) showed 'low phases' (early maximum SST); areas with low amplitudes (small variations in SSTs) had 'high phases' (late maximum SST). Empirical orthogonal function (EOF) analyses of SSTs revealed a first-mode variance of 97.6%. Annually, greater SST variations occurred closer to the continent. Temporal components of the second mode showed higher values in 1993, 1994, and 1995. These phenomena seemed to the effect of El $Ni{\tilde{n}}o$. The Sobel edge detection method (SEDM) delineated four fronts: the Subpolar Front (SPF) separating the northern and southern parts of the East Sea; the Kuroshio Front (KF) in the East China Sea, the South Sea Coastal Front (SSCF) in the South Sea, and a tidal front (TDF) in the West Sea. Thermal fronts generally occurred over steep bathymetric slopes. Annual amplitudes and phases were bounded within these frontal areas. EOF analysis of SST gradient values revealed the temporal and spatial variations in the TFs. The SPF and SSCF were most intense in March and October; the KF was most significant in March and May.

  • PDF