• Title/Summary/Keyword: Sobel 마스크

Search Result 76, Processing Time 0.024 seconds

Seam Carving based Occlusion Region Compensation Algorithm (심카빙 기반 가려짐 영역 보상 기법)

  • An, Jae-Woo;Yoo, Ji-Sang
    • Journal of Broadcast Engineering
    • /
    • v.16 no.4
    • /
    • pp.573-583
    • /
    • 2011
  • In this paper, we propose an occlusion compensation algorithm which is used for virtual view generation. In general, since occlusion region is recovered from neighboring pixels by taking the mean value or median value of neighbor pixels, the visual characteristics of a given image are not considered and consequently the accuracy of the compensated occlusion regions is not guaranteed. To solve these problem, we propose an algorithm that considers primary visual characteristics of a given image to compensate the occluded regions by using seam carving algorithm. In the proposed algorithm, we first use Sobel mask to obtain the edge map of a given image and then make it binary digit 0 or 1 and finally thinning process follows. Then, the energy patterns of original and thinned edge map obtained by the modified seam carving method are used to compensate the occlusion regions. Through experiments with many test images, we verify that the proposed algorithm performed better than conventional algorithms.

A Study on Scratch Detection of Semiconductor Package using Mask Image (마스크 이미지를 이용한 반도체 패키지 스크래치 검출 연구)

  • Lee, Tae-Hi;Park, Koo-Rack;Kim, Dong-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.43-48
    • /
    • 2017
  • Semiconductors are leading the development of industrial technology, leading to miniaturization and weight reduction of electronic products as a leading technology, we are dragging the electronic industry market Especially, the semiconductor manufacturing process is composed of highly accurate and complicated processes, and effective production is required Recently, a vision system combining a computer and a camera is utilized for defect detection In addition, the demand for a system for measuring the shape of a fine pattern processed by a special process is rapidly increasing. In this paper, we propose a vision algorithm using mask image to detect scratch defect of semiconductor pockage. When applied to the manufacturing process of semiconductor packages via the proposed system, it is expected that production management can be facilitated, and efficiency of production will be enhanced by failure judgment of high-speed packages.

A Study On Singular Points Extraction Algorithm for Finger Classification (지문 영상 분류를 위한 특이점 추출 알고리즘에 관한 연구)

  • 오창섭;최경삼;조성원
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.319-322
    • /
    • 2000
  • 본 논문에서는 지문영상으로부터 제안한 알고리즘을 이용하여 특이점(Core, Delta)을 추출한 후 특이점의 개수와 종류에 따라서 5가지 부류(arch, tented arch, left loop, right loop, whorl)로 지문영상을 분류하였다. 지문영상을 8*8블록과 16*16블록으로 분할한 후 3*3 Sobel 마스크를 씌워서 대표 방향을 구하였다. 또한 블록으로 분할한 영상으로부터 분산을 구하여 전경과 배경을 분리(segmentation)시켜 수행속도를 향상시켰다. 전처리 과정으로는 일정한 블록마다 임계값을 다르게 적용시키는 블록 이진화 기법을 사용하였으며 특이점을 추출하기 위해서 서로 크기가 다른 2개의 블록으로 영상을 분할하였다. 우선 8*8블록으로 영역을 분할한 후 방향 성분을 구하고 특이점들을 추출하였다. 이 경우 잡영 때문에 특이점이 너무 많이 추출되는 문제점이 있으므로 이러한 해결책으로 16*16블록으로 영역을 분할하여 방향 성분을 구하고 특이점을 추출하였다. 이렇게 다른 두 영역에서 동시에 나타나는 특이점을 후보 특이점으로 잡아서 그 후보 특이점 주변으로 Poincare 지수를 적용하여 확실한 특이점을 선택한 후 5가지의 지문 형태로 분류하였다. 실험결과 대부분의 지문영상에 대하여 강건한 분류 특성을 보이고 있음을 확인하였다.

  • PDF

The Study on the Extraction of Core Point using the direction Information of Fingerprint Ridges (지문 융선의 방향 정보를 이용한 중심점 추출에 관한 연구)

  • 최진호;나호준;김창수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.118-121
    • /
    • 2003
  • 지문을 이용한 개인 인증 절차는 지문 형태 별로 구분하는 분류(classification) 과정과 본인임을 확인하는 정합(matching) 과정으로 구분할 수 있다. 지문의 분류와 정합을 위해서는 기존 연구들이 지문의 특징점 수와 방향성의 흐름 패턴에 의존한다. 본 논문에서는 방향성의 흐름 패턴을 이용한 중심점 추출에 초점이 맞춰져 있으며 추출된 중심점 정보는 현재 구현되어진 특징점 추출 정보와 연계해 정합을 위한 기준점으로 활용한다. 중심점 추출 방식은 입력된 지문 영상에 대해 3 $\times$ 3 Sobel 마스크를 적용한 후 8 $\times$ 8블록 영상을 분할하여 각 대표 방향 성분을 추출하며 추출되어진 방향 성분과 특이점 패턴을 비교하여 중심점을 탐색한다.

  • PDF

Face Recognition System Using Gray Color Features (흑백 색상 정보 특징을 이용한 얼굴 인식 시스템)

  • 이현순;오동수;유관우
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.583-585
    • /
    • 2002
  • 얼굴 인식은 이미지에 대한 많은 변화(표정, 조명, 얼굴의 방향)로 인해 높은 인식률을 얻기 어렵다. 이 문제를 해결하기 위해, 여러 가지의 얼굴 인식에 관한 방법이 연구되었다. 본 논문은 윤곽선이 검출된 흑백 이미지에서 명암 정보를 이용하여 특징을 추출한 얼굴 인식 시스템을 구현한다. 얼굴 방향에 대해 제약조건을 지닌 정면의 얼굴 이미지에서 소벨 마스크(Sobel Mask)를 이용하여 추출한 윤곽선 이미지를 일정한 크기의 영역들을 구성하여 특징벡터를 생성한다. 생성된 특징벡터를 이용하여 빠른 속도로 얼굴의 특징을 추출하여 개인 정보를 생성할 수 있다. 개인 정보를 가지고 SVM(Support Vector Machine)을 이용하여 일대일 대응에서 인증을 실험한다. 이 시스템은 기하학적 특성 추출 방법보다 계산량이 적고, 높은 인식률을 보여준다.

  • PDF

Efficient variable BBM template for color image's edge detection (칼라영상의 에지 검출을 위한 효율적인 가변 BBM템플릿)

  • 백영현;변오성;문성룡
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.385-388
    • /
    • 2003
  • 영상의 에지는 입력 영상에 대한 중요 정보들을 가지고 있으며, 에지 추출은 영상인식의 성능을 좌우하는 중요 요소이다. 영상 에지 추출은 영상 분할의 첫 번째 단계이며, 영상의 구성을 결정하기 위해서 화소들을 하나의 영역으로 만드는데 사용되고 있다. 또한 에지 강도를 갖고 있는 모든 에지들을 검출하기 위해 많은 방법들이 제안되었다 기존의 에지 짐출은 흑백영상의 명암도의 변화에 국한되어 있었다 그러나 칼라영상을 이용하여 에지를 추출하는 경우에는 흑백영상보다 이용할 수 있는 정보가 많을 뿐 아니라 인간의 시각체계와도 유사하여 보다 나은 에지 추출을 기대할 수 있다. 본 논문에서는 칼라영상에서 직접적으로 얻을 수 있는 RGB 정보 중 광도를 분리하여 사용하는 YCbCr성분을 이용하여, 기존의 기울기연산자나 표면접합 템플릿에 의한 에지 추출이 아닌 3$\times$3 마스크안의 데이터값의 차에 따라 가변적으로 변하는 BBM템플릿을 제안하였다. 제안된 가변 BBM템플릿은 모의 실험한 결과 기존의 Sobel, Preweet, Roberts 같은 연산 템플릿보다 성능이 우수함을 확인하였다.

  • PDF

Medical Image Enhancement Using an Adaptive Nonlinear Histogram Stretching (적응적 비선형 히스트그램 스트레칭을 이용한 의료영상의 화질향상)

  • Kim, Seung-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.658-665
    • /
    • 2015
  • In the production of medical images, noise reduction and contrast enhancement are important methods to increase qualities of processing results. By using the edge-based denoising and adaptive nonlinear histogram stretching, a novel medical image enhancement algorithm is proposed. First, a medical image is decomposed by wavelet transform, and then all high frequency sub-images are decomposed by Haar transform. At the same time, edge detection with Sobel operator is performed. Second, noises in all high frequency sub-images are reduced by edge-based soft-threshold method. Third, high frequency coefficients are further enhanced by adaptive weight values in different sub-images. Finally, an adaptive nonlinear histogram stretching method is applied to increase the contrast of resultant image. Experimental results show that the proposed algorithm can enhance a low contrast medical image while preserving edges effectively without blurring the details.

Recognition of Concrete Surface Cracks Using Enhanced Max-Min Neural Networks (개선된 Max-Min 신경망을 이용한 콘크리트 균열 인식)

  • Kim, Kwang-Baek;Park, Hyun-Jung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.77-82
    • /
    • 2007
  • In this paper, we proposed the image processing techniques for extracting the cracks in a concrete surface crack image and the enhanced Max-Min neural network for recognizing the directions of the extracted cracks. The image processing techniques used are the closing operation or morphological techniques, the Sobel masking for extracting for edges of the cracks, and the iterated binarization for acquiring the binarized image from the crack image. The cracks are extracted from the concrete surface image after applying two times of noise reduction to the binarized image. We proposed the method for automatically recognizing the directions of the cracks with the enhanced Max-Min neural network. Also, we propose an enhanced Max-Min neural network by auto-tuning of learning rate using delta-bar-delta algorithm. The experiments using real concrete crack images showed that the cracks in the concrete crack images were effectively extracted and the enhanced Max-Min neural network was effective in the recognition of direction of the extracted cracks.

  • PDF

Enhanced segmentation method of a fingerprint image using run-length connectivity (Run-Length Connectivity를 이용한 지문영상의 영역분리 방법의 개선)

  • Park Jung-Ho;Song Jong-Kwan;Yoon Byung-Woo;Lee Myeong-Jin
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.249-255
    • /
    • 2004
  • In fingerprint verification and identification, fingerprint and background region should be segmented. For this purpose, most systems obtain variance of brightness of X and Y direction using Sobel mask. To decide given local region is background or not, the variance is compared with a certain threshold. Although this method is simple, most fingerprint image does not separated with two region of fingerprint and background region. In this paper, we presented a new segmentation algorithm based on Run-Length Connectivity analysis. For a given binary image after thresholding, suggested algorithm calculates RL of X and Y direction. Until the given image is segmented to two regions, small run region is successively inverted. Experimental result show that this algorithm effectively separates fingerprint region and background region.

  • PDF

Recognition of Resident Registration Cards Using ART-1 and PCA Algorithm (ART-1과 PCA 알고리즘을 이용한 주민등록증 인식)

  • Park, Sung-Dae;Woo, Young-Woon;Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.9
    • /
    • pp.1786-1792
    • /
    • 2007
  • In this paper, we proposed a recognition system for resident registration cards using ART-1 and PCA algorithm. To extract registration numbers and issue date, Sobel mask and median filter are applied first and noise removal follows. From the noise-removed image, horizontal smearing is used to extract the regions, which are binarized with recursive binarization algorithm. After that vortical smearing is applied to restore corrupted lesions, which are mainly due to the horizontal smearing. from the restored image, areas of individual codes are extracted using 4-directional edge following algorithm and face area is extracted by the morphologic characteristics of a registration card. Extracted codes are recognized using ART-1 algorithm and PCA algorithm is used to verify the face. When the proposed method was applied to 25 real registration card images, 323 characters from 325 registration numbers and 166 characters from 167 issue date numbers, were correctly recognized. The verification test with 25 forged images showed that the proposed verification algorithm is robust to detect forgery.