• Title/Summary/Keyword: SoC-FPGA

Search Result 155, Processing Time 0.028 seconds

Implementation of Segment_LCD display based on SoC design

  • Ling, Ma;Kim, Kab-Il;Son, Young-I.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.59-62
    • /
    • 2003
  • The purpose of this paper is to present how to implement Segment_LCD display using SoC design. The SoC design is achieved by using an ARM_based Excalibur device. The Excalibur device offers an outstanding embedded development platform with ARM922T and FPA. The design in the Excailbur device uses the embedded AR띤 Processor core and the AMBA high-performance bus (AHH) to write to a memory-mapped slave peripheral in the FPGA portion of the device. Here, Segment_LCD is one kind of memory-mapped slave peripherals. In order to Implement the Segment_LCD display based on SoC design, four steps are fellowed. At first, IP modules are made by using Verilog HDL. Secondly, the ARM processor of the Excalibur is programmed using C in ADS (ARM Developer Suite). And in the third step, the whole system is simulated and verified. At last, modules are downloaded to SoCMaster kit. Both Quartus II software and ModelSim5.5e software are the key software tools during the design.

  • PDF

IR Image Processing IP Design, Implementation and Verification For SoC Design

  • Yoon, Hee-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.1
    • /
    • pp.33-39
    • /
    • 2018
  • In this paper, We studied the possibility of SoC(System On Chip) design using infrared image processing IP(Intellectual Property). And, we studied NUC(Non Uniformity Correction), BPR(Bad Pixel Recovery), and CEM(Contrast Enhancement) processing, the infrared image processing algorithm implemented by IP. We showed the logic and timing diagram implemented through the hardware block designed based on each algorithm. Each algorithm was coded as RTL(Register Transfer Level) using Verilog HDL(Hardware Description Language), ALTERA QUARTUS synthesis, and programed in FPGA(Field Programmable Gated Array). In addition, we have verified that the image data is processed at each algorithm without any problems by integrating the infrared image processing algorithm. Particularly, using the directly manufactured electronic board, Processor, SRAM, and FLASH are interconnected and tested and the verification result is presented so that the SoC type can be realized later. The infrared image processing IP proposed and verified in this study is expected to be of high value in the future SoC semiconductor fabrication. In addition, we have laid the basis for future application in the camera SoC industry.

VerilogLinker : A tool for link IDE for FPGA controller to commercial FPGA synthesis software (VerilogLinker : FPGA 제어기를 위한 통합개발환경과 상용 FPGA 합성도구의 연동)

  • Seo, Youngju;Lee, Dong-Ah;Yoo, Junbeom
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.595-598
    • /
    • 2014
  • 원전 디지털 계측제어시스템에서 공통원인고장(Common cause failure)의 발생 가능성이 증가함에 따라 이를 방지하기 위해 프로그래머블 논리소자(Field Programmable Gate Array)를 이용한 제어기가 개발되어 활용되고 있다. 그러나, FPGA-기반의 제어기를 구현하는데 사용되는 하드웨어 기술 언어는 그래픽 언어를 이용한 PLC 기반의 개발을 하던 대부분의 원전 계측제어 엔지니어에게 친숙하지 않아 제어기의 구현에 어려움이 있다. 따라서 엔지니어에게 친숙한 그래픽 언어를 이용하여 FPGA 용 제어 프로그램을 작성할 수 있는 통합개발환경이 필요하다. 본 논문에서 구현한 VerilogLinker 는 제어프로그램의 개발을 위한 통합개발환경의 일부로 통합개발환경을 이용한 제어 프로그램의 개발과정 중에서 생성된 Verilog 파일을 FPGA 공급자가 제공하는 상용 소프트웨어인 Libero SoC 와 연결하는 기능을 제공한다.

FPGA Implementation of Elliptic Curve Cryptography Processor as Intellectual Property (타원곡선 암호연산 IP의 FPGA구현)

  • Moon, San-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.670-673
    • /
    • 2008
  • Optimized algorithms and numerical expressions which had been verified through C program simulation, should be analyzed again with HDL (hardware description language) such as Verilog, so that the verified ones could be modified to be applied directly to hardware implementation. The reason is that the characteristics of C programming language design is intrinsically different from the hardware design structure. The hardware IP verified doubly in view of hardware structure together with algorithmic verification, was implemented on the Altera Excalibur FPGA device equipped with ARM9 microprocessor core, to a real chip prototype, using Altera embedded system development tool kit. The implemented finite field calculation IPs can be used as library modules as Elliptic Curve Cryptography finite field operations which has more than 193 bit key length.

  • PDF

Implementation of a Multi-Protocol Baseband Modem for RFID Reader (RFID Reader용 멀티 프로토콜 모뎀 설계)

  • Moon, Jeon-Il;Ki, Tae-Hun;Bae, Gyu-Sung;Kim, Jong-Bae
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • Radio Frequency Identification (RFID) is an automatic identification method. Information such as identification, logistics history, and specification of products are written and stored into the memory of RFID tags (that is, transponders), and retrieved through RF communication between RFID reader device and RFID tags. RFID systems have been applied to many fields of transportation, industry, logistics, environment, etc in order to improve business efficiency and reduce maintenance cost as well. Recently, some research results are announced in which RFID devices are combined with other sensors for mobile robot localization. In this paper, design of multi-protocol baseband for RFID reader device is proposed, and the baseband modem is implemented into SoC (System On a Chip). The baseband modem SoC for multi-protocol RFID reader is composed of several IP (Intellectual Property) blocks such as multi-protocol blocks, CPU, UART(Universal Asynchronous Receiver and Transmitter), memory, etc. As a result, the SoC implemented with FPGA(Field Programmable Gate Array) is applied to real product. It is shown that the size of RFID Reader module designed with the FPGA becomes smaller, and the SoC chip price for the same function becomes cheap. In addition, operation performance could be the same or better than that of the product with no SoC applied.

  • PDF

Implementation of a Window-Masking Method and the Soft-core Processor based TDD Switching Control SoC FPGA System (윈도 마스킹 기법과 Soft-core Processor 기반 TDD 스위칭 제어 SoC 시스템 FPGA 구현)

  • Hee-Jin Yang;Jeung-Sub Lee;Han-Sle Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.3
    • /
    • pp.166-175
    • /
    • 2024
  • In this paper, the Window-Masking Method and HAT (Hardware Attached Top) CPU SoM (System on Module) are used to improve the performance and reduce the weight of the MANET (Mobile Ad-hoc Network) network synchronization system using time division redundancy. We propose converting it into a RISC-V based soft-core MCU and mounting it on an FPGA, a hardware accelerator. It was also verified through experiment. In terms of performance, by applying the proposed technique, the synchronization acquisition range is from -50dBm to +10dBm to -60dBm to +10dBm, the lowest input level for synchronization is increased by 20% from -50dBm to -60dBm, and the detection delay (Latency) is 220ns. Reduced by 43% to 125ns. In terms of weight reduction, computing resources (48%), size (33%), and weight (27%) were reduced by an average of 36% by replacing with soft-core MCU.

Topology of High Speed System Emulator and Its Software (초고속 시스템 에뮬레이터의 구조와 이를 위한 소프트웨어)

  • Kim, Nam-Do;Yang, Se-Yang
    • The KIPS Transactions:PartA
    • /
    • v.8A no.4
    • /
    • pp.479-488
    • /
    • 2001
  • As the SoC designs complexity constantly increases, the simulation that uses their software models simply takes too much time. To solve this problem, FPGA-based logic emulators have been developed and commonly used in the industry. However, FPGA-based logic emulators are facing with the problems of which not only very low FPGA resource usage rate due to the very limited number of pins in FPGAs, but also the emulation speed getting slow drastically as the complexity of designs increases. In this paper, we proposed a new innovative emulation architecture and its software that has high FPGA resource usage rate and makes the emulation extremely fast. The proposed emulation system has merits to overcome the FPGA pin limitation by pipelined ring which transfers multiple logic signal through a single physical pin, and it also makes possible to use a high speed system clock through the intelligent ring topology. In this topology, not only all signal transfer channels among EPGAs are totally separated from user logic so that a high speed system clock can be used, but also the depth of combinational paths is kept swallow as much as possible. Both of these are contributed to achieve high speed emulation. For pipelined singnals transfer among FPGAs we adopt a few heuristic scheduling having low computation complexity. Experimental result with a 12 bit microcontroller has shown that high speed emulation possible even with these simple heuristic scheduling algorithms.

  • PDF

A Design and Implementation of 32-bit Five-Stage RISC-V Processor Using FPGA (FPGA를 이용한 32-bit RISC-V 5단계 파이프라인 프로세서 설계 및 구현)

  • Jo, Sangun;Lee, Jonghwan;Kim, Yongwoo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.27-32
    • /
    • 2022
  • RISC-V is an open instruction set architecture (ISA) developed in 2010 at UC Berkeley, and active research is being conducted as a processor to compete with ARM. In this paper, we propose an SoC system including an RV32I ISA-based 32-bit 5-stage pipeline processor and AHB bus master. The proposed RISC-V processor supports 37 instructions, excluding FENCE, ECALL, and EBREAK instructions, out of a total of 40 instructions based on RV32I ISA. In addition, the RISC-V processor can be connected to peripheral devices such as BRAM, UART, and TIMER using the AHB-lite bus protocol through the proposed AHB bus master. The proposed SoC system was implemented in Arty A7-35T FPGA with 1,959 LUTs and 1,982 flip-flops. Furthermore, the proposed hardware has a maximum operating frequency of 50 MHz. In the Dhrystone benchmark, the proposed processor performance was confirmed to be 0.48 DMIPS.

A Security SoC supporting ECC based Public-Key Security Protocols (ECC 기반의 공개키 보안 프로토콜을 지원하는 보안 SoC)

  • Kim, Dong-Seong;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1470-1476
    • /
    • 2020
  • This paper describes a design of a lightweight security system-on-chip (SoC) suitable for the implementation of security protocols for IoT and mobile devices. The security SoC using Cortex-M0 as a CPU integrates hardware crypto engines including an elliptic curve cryptography (ECC) core, a SHA3 hash core, an ARIA-AES block cipher core and a true random number generator (TRNG) core. The ECC core was designed to support twenty elliptic curves over both prime field and binary field defined in the SEC2, and was based on a word-based Montgomery multiplier in which the partial product generations/additions and modular reductions are processed in a sub-pipelining manner. The H/W-S/W co-operation for elliptic curve digital signature algorithm (EC-DSA) protocol was demonstrated by implementing the security SoC on a Cyclone-5 FPGA device. The security SoC, synthesized with a 65-nm CMOS cell library, occupies 193,312 gate equivalents (GEs) and 84 kbytes of RAM.

Implementation of the AMBA AXI4 Bus interface for effective data transaction and optimized hardware design (효율적인 데이터 전송과 하드웨어 최적화를 위한 AMBA AXI4 BUS Interface 구현)

  • Kim, Hyeon-Wook;Kim, Geun-Jun;Jo, Gi-Ppeum;Kang, Bong-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.2
    • /
    • pp.70-75
    • /
    • 2014
  • Recently, the demand for high-integrated, low-powered, and high-powered SoC design has been increasing due to the multi-functionality and the miniaturization of digital devices and the high capacity of service informations. With the rapid evolution of the system, the required hardware performances have become diversified, the FPGA system has been increasingly adopted for the rapid verification, and SoC system using the FPGA and the ARM core for control has been growingly chosen. While the AXI bus is used in these kinds of systems in various ways, it is traditionally designed with AXI slave structure. In slave structure, there are problems with the CPU resources because CPU is continually involved in the data transfer and can't be used in other jobs, and with the decreased transmission efficiency because the time not used of AXI bus beomes longer. In this paper, an efficient AXI master interface is proposed to solve this problem. The simulation results show that the proposed system achieves reductions in the consumption clock by an average of 51.99% and in the slice by 31% and that the maximum operating frequency is increased to 107.84MHz by about 140%.