• 제목/요약/키워드: Snowfall Depth

검색결과 52건 처리시간 0.017초

기상청 관측 자료와 눈 밀도 공식을 이용한 적설하중의 근사 추정 (An Approximate Estimation of Snow Weight Using KMA Weather Station Data and Snow Density Formulae)

  • 조지영;이승재;최원
    • 한국농림기상학회지
    • /
    • 제22권2호
    • /
    • pp.92-101
    • /
    • 2020
  • 대설로 인한 시설 농가의 피해를 예방하고 경감시키기 위해서는 기존의 적설 깊이와 더불어 적설하중에 대한 예보가 추가로 제공되어야 한다. 본 연구에서는 눈의 밀도 및 적설하중과 관련하여 해외 연구에서 사용하고 있는 이론과 공식들을 검토하고, 이를 국내에서 장기간의 농업기상관측 이력을 가지고 있는 수원에 적용하여 얻는 적설하중 결과를 소개하였다. 지난 30년(1988~2017) 간 국내 94개 기상대와 무인자동기상 관측소에서 측정된 적설(3시간 신적설, 최심신적설, 최심적설) 깊이 자료를 이용하여 우리나라 대설주의보와 대설경보에 해당하는 적설 깊이의 빈도를 살펴보았다. 우리나라 권역별 적설빈도 공간분포를 보면 대설주의보에 해당하는 신적설은 전북지역에서 많이 발생했고, 대설경보에 해당하는 신적설은 경북과 강원지역에서 많이 나타났다. 기록적인 대설은 경북과 강원지역에서 나타났으나, 최근의 겨울철 대설 피해는 경기, 경북, 전남에서 나타났다. 즉 적설 깊이가 깊더라도 적설하중이 무겁지 않다면 큰 피해가 발생하지 않는 것을 확인할 수 있었다. 수원지역의 적설하중을 추정한 결과를 보면 공식들에 따라 다양한 값들과 특징을 보였다. 대부분 적설 깊이가 깊을 때 적설하중이 무겁게 나타났지만 최대적설하중과 최심적설이 반드시 같은 날에 발생하지는 않았다. 이러한 수원지역의 결과는 다른 지역에서의 적설하중을 추정하는데 도움을 줄 수 있고, 온실구조 설계 기준의 표준 확립과 적설하중 예보를 통해 농가의 경제적 손실을 줄이는데 기여할 것이다.

Comparison of Snow Cover Fraction Functions to Estimate Snow Depth of South Korea from MODIS Imagery

  • Kim, Daeseong;Jung, Hyung-Sup;Kim, Jeong-Cheol
    • 대한원격탐사학회지
    • /
    • 제33권4호
    • /
    • pp.401-410
    • /
    • 2017
  • Estimation of snow depth using optical image is conducted by using correlation with Snow Cover Fraction (SCF). Various algorithms have been proposed for the estimation of snow cover fraction based on Normalized Difference Snow Index (NDSI). In this study we tested linear, quadratic, and exponential equations for the generation of snow cover fraction maps using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua satellite in order to evaluate their applicability to the complex terrain of South Korea and to search for improvements to the estimation of snow depth on this landscape. The results were validated by comparison with in-situ snowfall data from weather stations, with Root Mean Square Error (RMSE) calculated as 3.43, 2.37, and 3.99 cm for the linear, quadratic, and exponential approaches, respectively. Although quadratic results showed the best RMSE, this was due to the limitations of the data used in the study; there are few number of in-situ data recorded on the station at the time of image acquisition and even the data is mostly recorded on low snowfall. So, we conclude that linear-based algorithms are better suited for use in South Korea. However, in the case of using the linear equation, the SCF with a negative value can be calculated, so it should be corrected. Since the coefficients of the equation are not optimized for this area, further regression analysis is needed. In addition, if more variables such as Normalized Difference Vegetation Index (NDVI), land cover, etc. are considered, it could be possible that estimation of national-scale snow depth with higher accuracy.

최심신적설량 빈도분석을 위한 임계값을 가지는 일반화된 혼합분포모형 개발 (Development of Snow Depth Frequency Analysis Model Based on A Generalized Mixture Distribution with Threshold)

  • 김호준;김장경;권현한
    • 한국방재안전학회논문집
    • /
    • 제13권4호
    • /
    • pp.25-36
    • /
    • 2020
  • 기후변화로 인해 다양한 자연재해의 발생빈도 및 강도가 증가하고 있으며, 이를 대비하기 위하여 행정안전부에서 가뭄과 대설까지 포함한 자연재해저감 종합계획을 발표하였다. 강설량은 기온과 지형적 요인의 영향을 크게 받는다. 산악지형이 많은 강원도는 강설량이 많아 큰 적설량이 관측되지만, 겨울철 평균 온도가 상대적으로 높은 남부지방은 적설량이 작다. 무강설과 결측으로 인해 관측값에 0이 포함된 경우가 존재한다. 자료에 포함된 0은 통계적으로 민감하게 작용하며, 최적 확률분포 선정과 매개변수 추정이 어려워지는 문제점이 발생한다. 본 연구에서는 창원, 통영, 진주 관측소의 최심신적설에 대해 혼합분포를 적용하여 0을 구분하였고, 0에 근사한 값을 나누는 기준인 임계값을 매개변수 𝛿로 가정함으로써 무적설 기준을 자동으로 모형에서 추정하도록 하였다. Bayesian기법 활용하여 혼합분포모형의 매개변수를 추정하였고, 산정된 빈도별 확률적설심의 불확실성을 정량화하였다. 대관령 지점과 비교한 결과, 본 연구의 혼합분포모형은 적설량이 적은 지점에 대해 적용성이 우수한 것으로 평가되었다.

혼합분포함수를 적용한 최심신적설량에 대한 수문통계학적 빈도분석 (Statistical frequency analysis of snow depth using mixed distributions)

  • 박경운;김동욱;신지예;김태웅
    • 한국수자원학회논문집
    • /
    • 제52권12호
    • /
    • pp.1001-1009
    • /
    • 2019
  • 최근 우리나라에서 폭설이 증가하고 있으며, 이로 인한 피해액 또한 증가하고 있다. 우리나라는 전국적으로 폭설로 인한 피해를 줄이기 위해 내설 설계기준 마련 등의 노력을 하고 있으나, 강설 자료의 특성으로 기준 설정에 어려움이 있다. 본 연구에서는 우리나라 남부 지역에 있는 진주, 창원, 합천 지점의 적설량에 대한 수문통계학적 빈도분석을 수행하여 최심신적설량에 대한 설계수문량을 정량적으로 산정하였다. 자료의 특성상 연도별 측정값이 '0'인 경우가 존재하여 기존의 빈도분석 방법을 적용할 경우 매개변수의 추정이 불가능한 상황도 발생한다. 이러한 문제를 해결하기 위하여 혼합분포함수를 이용하였고, 분포모형으로는 대수정규, 일반화 파레토, 일반화 극치, 감마, 검벨, 와이블 분포를 적용하였다. 적용 결과, 단일분포함수를 적용할 때 보다 혼합분포함수를 적용할 때 확률적설심이 더 작게 산정되었으며, 전체적으로 관측값이 간헐적으로 나타나는 지점에서 혼합분포함수의 적용성이 우수한 것으로 판단된다.

2014년 강원 폭설동안 GPS 가강수량 탐측 (Remote Sensing of GPS Precipitable Water Vapor during 2014 Heavy Snowfall in Gangwon Province)

  • 남진용;송동섭
    • 한국측량학회지
    • /
    • 제33권4호
    • /
    • pp.305-316
    • /
    • 2015
  • GPS 상시관측소와 위성 신호 전송 과정에서 발생되는 대류권에서의 GPS 신호 지연은 가강수량을 복원하는데 사용되고 있다. 지상 기반의 GPS를 이용한 수증기 탐측 기술은 태풍 모니터링, 기후변화 추적을 장기간 수증기 관측 분야에서 유용하다. 본 연구에서는 2014년 영동지방에 폭설이 내리는 동안 우리나라의 GPS 가강수량 변화 추세를 분석하였다. GPS 가강수량이 증가된 이후 강설이 발생되는 경향이 나타났으며, 강릉과 울진에서 최대 GPS 가 강수량이 발생한 일정 시간 이후에 최대 신적설이 기록되었다. 또한 이번 폭설 이벤트 동안 고층기상관측시스템으로부터 분석된 K-index와 total index 및 GPS 가강수량에는 밀접한 상관관계가 있는 것으로 분석되었다.

정밀 강설량계 개발을 위한 연구 (A Study on the Development of a High Resolution Snow Gauge)

  • 이부용
    • 한국농림기상학회지
    • /
    • 제8권4호
    • /
    • pp.270-274
    • /
    • 2006
  • 본 연구에서 고안 설계한 적설 관측용 수위 센서는 야외에서 일 변화량은 0.1 mm 내외의 적은 양의 오차를 기록하여 강설관측 센서로 적합한 것으로 판명되었으며, 실내 검정 결과 기상청에서 요구하고 100 mm의 강수 검정범위에 대해서 1%이하의 신뢰성 있는 검정결과를 나타내어 강설량 관측에 적합한 것으로 판명되었다. 또한 $-20^{\circ}C$의 테스트에서도 0.1 mm에 해당하는 아주 작은 변화 값을 타나내어 겨울철 야외환경에도 적합한 것으로 판명되었다. 깔때기가 없으며 수수구의 크기에 제한을 받지 않는 새로운 강수 관측구조는 적은 양의 강설관측이 가능하여 겨울철 예보에 필요한 레이다. 영상과 위성 영상에 의한 강설 연구와 해석에 많은 도움을 줄 수 있을 것이다. 또한 적설상당수량 관측이 가능하여 수자원 분야의 연구에도 많은 도움이 될 수 있다. 부동액을 사용하므로 고체 상태의 강설에 대해서 직접 관측이 가능하여 강설 관측에 있어 문제점으로 지적이 되고 있는 신적설 관측의 어려움을 해결할 수 있으며, 추후 야외 관측용 모델을 제작하여 야외 환경에서 여타 장비들과 비교 실험을 통해서 성능을 검정하고 개선할 계획이다.

Mapping Snow Depth Using Moderate Resolution Imaging Spectroradiometer Satellite Images: Application to the Republic of Korea

  • Kim, Daeseong;Jung, Hyung-Sup
    • 대한원격탐사학회지
    • /
    • 제34권4호
    • /
    • pp.625-638
    • /
    • 2018
  • In this paper, we derive i) a function to estimate snow cover fraction (SCF) from a MODIS satellite image that has a wide observational area and short re-visit period and ii) a function to determine snow depth from the estimated SCF map. The SCF equation is important for estimating the snow depth from optical images. The proposed SCF equation is defined using the Gaussian function. We found that the Gaussian function was a better model than the linear equation for explaining the relationship between the normalized difference snow index (NDSI) and the normalized difference vegetation index (NDVI), and SCF. An accuracy test was performed using 38 MODIS images, and the achieved root mean square error (RMSE) was improved by approximately 7.7 % compared to that of the linear equation. After the SCF maps were created using the SCF equation from the MODIS images, a relation function between in-situ snow depth and MODIS-derived SCF was defined. The RMSE of the MODIS-derived snow depth was approximately 3.55 cm when compared to the in-situ data. This is a somewhat large error range in the Republic of Korea, which generally has less than 10 cm of snowfall. Therefore, in this study, we corrected the calculated snow depth using the relationship between the measured and calculated values for each single image unit. The corrected snow depth was finally recorded and had an RMSE of approximately 2.98 cm, which was an improvement. In future, the accuracy of the algorithm can be improved by considering more varied variables at the same time.

Study of Snow Depletion Characteristics at Two Mountainous Watersheds Using NOAA AVHRR Time Series Data

  • Shin, Hyungjin;Park, Minji;Chae, Hyosok;Kim, Saetbyul;Kim, Seongjoon
    • 대한원격탐사학회지
    • /
    • 제29권3호
    • /
    • pp.315-324
    • /
    • 2013
  • Spatial information of snow cover and depth distribution is a key component for snowmelt runoff modeling. Wide snow cover areas can be extracted from NOAA AVHRR or Terra MODIS satellite images. In this study eight sets of annual snow cover data (1997-2006) in two mountainous watersheds (A: Chungju-Dam and B: Soyanggang-Dam) were extracted using NOAA AVHRR images. The distribution of snow depth within the Snow Cover Area (SCA) was generated using snowfall data from ground meteorological observation stations. Snow depletion characteristics for the two watersheds were analyzed snow distribution time series data. The decreased pattern of SCA can be expressed as a logarithmic function; the determination coefficients were 0.62 and 0.68 for the A and B watersheds, respectively. The SCA decreased over 70% within 10 days from the time of maximum SCA.

NOAA AVHRR 영상 및 GIS 기법을 이용한 국내 5대강 유역의 융설 매개변수 추출 (Extraction of Snowmelt Parameters using NOAA AVHRR and GIS Technique for 5 River Basins in South Korea)

  • 신형진;박근애;김성준
    • 대한원격탐사학회지
    • /
    • 제23권2호
    • /
    • pp.119-124
    • /
    • 2007
  • 융설 모형의 중요 매개변수인 적설분포면적은 실제 우리나라에서 적설과 관련한 관측 자료의 부족으로 인해 매개변수 추정이 어렵다. 이러한 문제점 해결을 위해 원격탐사기법을 활용하여 적설분포면적을 추출하였다. 본 연구에서는 1997년부터 2006년까지의 겨울철 NOAA (National Oceanic and Atmospheric Administration)의 AVHRR(Advanced Very High Resolution Radiometer) 위성영상의 8 sets의 총 108개 영상을 이용하여 적설분포면적을 추출하였고, 기상청의 지상기상관측소의 최심적설심 자료를 이용하여 GIS 자료를 구축함으로써 적설심의 공간적 분포를 추출하였다. 이를 국내 5대유역인 한강, 낙동강, 금강, 영산강, 섬진강 유역에 대하여 융설모형의 주요 매개변수인 적설분포면적, 유역 평균, 최대 적설심과 적설분포감소비곡선을 구축하였다. 그 중 적설분포면적감소곡선 (SDC : Snow cover Depletion Curve)는 적설분포면적의 감소형태를 나타내주는 지표로써 융설의 가장 민감한 매개변수이다. 이를 국내 5대강 유역에 대해 구축하여 정량화하였다.