• Title/Summary/Keyword: Snow cover area

Search Result 52, Processing Time 0.019 seconds

A Fundamental Study on the Snowmelt Effects for Long-Term Runoff Analysis (장기 유출해석에서의 융설영향에 관한 기초 연구)

  • Bae, Deok-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.833-844
    • /
    • 1998
  • The objectives of this study are to adopt a snowmelt model for coupling a rainfall-runoff model and to study snowmelt effects for long-term runoff analysis on the northeast mountaneous area in Korea. The NWS temperature-index snowmelt model was selected and tested on the 1,059+,6 km$^2$ Naerinchen basin. It can be observed that the time variations of the computed areal extents of snow cover from the model are well agreement with those of the observe station snowfall records on the Inje meteorological station. It is also evident that the computed soil water contents and river flows indicate quite different behaviors with or without snowmelt model. It is concluded that the snowmelt model works well and the snowmelt effects for multi-decadal river flow computations are important on the study area.

  • PDF

Selecting Suitable Riparian Wildlife Passage Locations for Water Deer based on MaxEnt Model and Wildlife Crossing Analysis (MaxEnt 모형과 고라니의 이동행태를 고려한 수변지역 이동통로 적지선정)

  • Jeong, Seung Gyu;Lee, Hwa Su;Park, Jong Hoon;Lee, Dong Kun;Park, Chong Hwa;Seo, Chang Wan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.1
    • /
    • pp.101-111
    • /
    • 2015
  • Stream restoration projects have become threats to riparian ecosystem in Rep. of korea. Riparian wildlife becomes isolated and the animals are often experience difficulties in crossing riparian corridors. The purposes of this study is to select suitable wildlife passages for wild animals crossing riparian corridors. Maximum entropy model and snow tracking data on embankment in winter seasons were used to develop species distribution models to select suitable wildlife passages for water deer. The analysis suggests the following. Firstly, most significant factors for water deer's habitat in area nearby riparian area are shown to distance to water, age-class, land cover, slope, aspect, digital elevation model, tree density, and distance to road. For the riparian area, significant factors are shown to be land cover, size of riparian area, distance to tributary, and distance to built-up. Secondly, the suitable wildlife passages are recommended to reflect areas of high suitability with Maximum Entropy model in riparian areas and the surrounding areas and moving passages. The selected suitable areas are shown to be areas with low connectivity due to roads and vertical levee although typical habitats for water deer are forest, grassland, and farmland. In addition, the analysis of traces on snow suggests that the water deer make a detour around the artificial structures. In addition, the water deer are shown to make a detour around the fences of roads and embankment around farmland. Lastly, the water deer prefer habitats around riparian areas following tributaries. The method used in this study is expected to provide cost-efficient and functional analysis in selecting suitable areas.

Time-Lapse Electrical Resistivity Structures for the Active Layer of Permafrost Terrain at the King Sejong Station: Correlation Interpretation with Vegetation and Meteorological Data (세종과학기지 주변 영구동토의 활동층에 대한 시간경과 전기비저항자료의 해석: 기상 및 식생 자료와의 연계해석)

  • Kim, Kwansoo;Lee, Joohan;Lee, Eungsang;Ju, Hyeontae;Hyun, Chang-Uk;Park, Sang-Jong;Kim, Ok-Sun;Lee, Sun-Joong;Kim, Ji-Soo
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.413-423
    • /
    • 2020
  • Over the wide area, King Sejong Station and the nearby land are uncovered with snow and ice conditions. Therefore, the active layer on the permafrost has been formed to be much thicker than the other Antarctica region. Electrical resistivity survey of Wenner and dipole-dipole arrays was undertaken at a series of time in the freezing season at the King Sejong Station to delineate subsurface structure and to monitor active layer in permafrost terrain. Time-lapse resistivity structures are well in terms of the vegetation distribution, ground surface temperature, and snow depth. Horizontal high resistivity belt(>1826 Ωm) at very shallow depth is thickening with the lapse of time, probably caused by the freezing of the water in the pore spaces with decrease of ground temperature. Subsurface structures for the area of low snow-cover and vegetated zone area are comprised of 0~0.5 m deep high-resistive gravel-rich soil, 0.5~3 m deep low-resistive active layer, and the underlying permafrost. In contrast, the unvegetated area and high snow-buildup is characterized with high resistivities larger than approximately 2000 Ωm due to freezing of the soil throughout the year. Data interpretation and correlation schemes explored in this paper can be applied to confirm the active layer, which is expected to get thinner in additional survey during the thawing season.

The Features of Asian Dust Events Originated in Manchuria (만주에서 발원한 황사현상 (II) -2001년 이후 사례를 중심으로-)

  • Kim, Sumin;Chun, Youngsin;Kim, Seung-Bum
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.273-286
    • /
    • 2010
  • The northeast part of China(hereafter Manchuria) is one of Asian dust source regions along with Gobi, Inner Mongolia and Loess Plateau. In this study, a geographical survey over the area was carried out to determine its soil characteristics in June 2009. It revealed that some parts of the area, especially near Keerchin desert, consist of alkali clay soil mixed up with sand. Manchuria, where is a vast cornfield, can be a potential source region of Asian dust from fall to following spring after harvesting. The frequency of Asian dust over the region from 1996 to 2009 was examined using 3-hourly GTS SYNOP data and it showed that the occurrence of Asian dust over the region is high in the springtime. It was also revealed that snow cover is the key parameter affecting on the frequency through the analysis of NCEP reanalysis data. To scrutinize the path and structure of Asian dust from Manchuria, the event on 3~4 April 2008 and 25 January 2010 were intensively investigated with regard to features of synoptic weather patterns, satellite imagery, airstream, naked eye-observations, concentrations of PM10, 2.5 and 1.0. For this case, the Asian dust from the area reached to Korea less than a day. However, the duration time of the dust in Korea was short (< 7 hours). The average of hourly PM10 reached up to $340{\mu}g/m^{3}$ at Baengnyeondo during the period. The high PM2.5 and PM1.0 concentrations were also observed at several sites in Korea, indicating that air pollutants could be transported along with the dust.

Evaluating Vulnerability to Snowfall Disasters Using Entropy Method for Overlapping Distributions of Vulnerable Factors in Busan, Korea (취약인자의 엔트로피 기반 중첩 분석을 이용한 부산광역시의 적설재해 취약지역 등급 평가)

  • An, ChanJung;Park, Yongmi;Choi, Wonsik
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.217-229
    • /
    • 2020
  • Recently, weather changes in Korea have intensified due to global warming, and the five major natural disasters that occur mostly include heavy rains, typhoons, storms, heavy snow, and earthquakes. Busan is vulnerable to snow disaster, given that the amount of natural disaster damage in Busan accounts for more than 50% of the total amount in the entire metropolitan cities in Korea, and that the Busan area includes many hilly mountains. In this study, we attempted to identify vulnerable areas for snowfall disasters in Busan areas using the geographic information system (GIS) with the data for both geographical and anthropogenic characteristics. We produced the maps of vulnerable areas for evaluating factors that include altitude, slope, land cover, road networks, and demographics, and overlapped those maps to rank the vulnerability to snowfall disasters as the 5th levels finally. To weight each evaluating factor, we used an entropy method. The riskiest areas are characterized by being located in mountainous areas with roads, including Sansung-ro in Geumjeong-gu, Mandeok tunnel in Buk-gu, Hwangnyeongsan-ro in Suyeong-gu, and others, where road restrictions were actually enforced due to snowfall events in the past. This method is simple and easy to be updated, and thus we think this methodology can be adapted to identify vulnerable areas for other environmental disasters.

Optimization of Input Features for Vegetation Classification Based on Random Forest and Sentinel-2 Image (랜덤포레스트와 Sentinel-2를 이용한 식생 분류의 입력특성 최적화)

  • LEE, Seung-Min;JEONG, Jong-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.52-67
    • /
    • 2020
  • Recently, the Arctic has been exposed to snow-covered land due to melting permafrost every year, and the Korea Geographic Information Institute(NGII) provides polar spatial information service by establishing spatial information of the polar region. However, there is a lack of spatial information on vegetation sensitive to climate change. This research used a multi-temporal Sentinel-2 image to perform land cover classification of the Ny-Ålesund in Arctic Svalbard. In the pre-processing step, 10 bands and 6 vegetation spectral index were generated from multi-temporal Sentinel-2 images. In image-classification step is consisted of extracting the vegetation area through 8-class land cover classification and performing the vegetation species classification. The image classification algorithm used Random Forest to evaluate the accuracy and calculate feature importance through Out-Of-Bag(OOB). To identify the advantages of multi- temporary Sentinel-2 for vegetation classification, the overall accuracy was compared according to the number of images stacked and vegetation spectral index. Overall accuracy was 77% when using single-time Sentinel-2 images, but improved to 81% when using multi-time Sentinel-2 images. In addition, the overall accuracy improved to about 83% in learning when the vegetation index was used additionally. The most important spectral variables to distinguish between vegetation classes are located in the Red, Green, and short wave infrared-1(SWIR1). This research can be used as a basic study that optimizes input characteristics in performing the classification of vegetation in the polar regions.

The Tendency Analysis of Albedo by Land Cover Over Northeast Asia Using MODIS 16-Day Composited Albedo data (MODIS 16-Day Albedo 자료를 이용한 동북아시아 지역의 토지피복 별 알베도 변화 분석)

  • Park, Eun-Bin;Han, Kyung-Soo;Lee, Chang-Suk;Pi, Kyung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.5
    • /
    • pp.501-508
    • /
    • 2012
  • Albedo is known as a factor that directly impacts on the surface energy balance one of the elements of earth radiation balance. The change of albedo includes the change of soil moisture, vegetation, solar zenith angle, snow, and so on. In addition, it operates as a crucial path to understanding feedback mechanisms between radiation balance and its influence on climate and vegetation dynamics and therefore, observing the variation of albedo is a one of the essential procedures for anticipating climate change. In this study, we used MODIS 16-Day composited Albedo data from 2001 to 2011 years with the purpose of observing the change of albedo over Northeast Asia. According to the tendency of albedo for 11 years, albedo in the area of an active vegetation has increased in near-infrared (NIR) domain and decreased in visible (VIS) domain. On the basis of local changes in vegetation in 2002, the both area of the Gobi Desert and the Manchuria was enormously changed and chosen the research area and furthermore, the vegetation of both regions had deteriorated due to the change of the minimum value since 2010.

Analysis of Spatio-Temporal Patterns of Nighttime Light Brightness of Seoul Metropolitan Area using VIIRS-DNB Data (VIIRS-DNB 데이터를 이용한 수도권 야간 빛 강도의 시·공간 패턴 분석)

  • Zhu, Lei;Cho, Daeheon;Lee, Soyoung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.19-37
    • /
    • 2017
  • Visible Infrared Imaging Radiometer Suite Day-Night Band (VIIRS-DNB) data provides a much higher capability for observing and quantifying nighttime light (NTL) brightness in comparison with Defense Meteorological Satellite-Operational Linescan System (DMSP-OLS) data. In South Korea, there is little research on the detection of NTL brightness change using VIIRS-DNB data. This study analyzed the spatial distribution and change of NTL brightness between 2013 and 2016 using VIIRS-DNB data, and detected its spatial relation with possible influencing factors using regression models. The intra-year seasonality of NTL brightness in 2016 was also studied by analyzing the deviation and change clusters, as well as the influencing factors. Results are as follows: 1) The higher value of NTL brightness in 2013 and 2016 is concentrated in Seoul and its surrounding cities, which positively correlated with population density and residential areas, economic land use, and other factors; 2) There is a decreasing trend of NTL brightness from 2013 to 2016, which is obvious in Seoul, with the change of population density and area of industrial buildings as the main influencing factors; 3) Areas in Seoul, and some surrounding areas have high deviation of the intra-year NTL brightness, and 71% of the total areas have their highest NTL brightness in January, February, October, November and December; and 4) Change of NTL brightness between summer and winter demonstrated a significantly positive relation with snow cover area change, and a slightly and significantly negative relation with albedo change.

The Character of Distribution of Solar Radiation in Mongolia based on Meteorological Satellite Data (위성자료를 이용한 몽골의 일사량 분포 특성)

  • Jee, Joon-Bum;Jeon, Sang-Hee;Choi, Young-Jean;Lee, Seung-Woo;Park, Young-San;Lee, Kyu-Tae
    • Journal of the Korean earth science society
    • /
    • v.33 no.2
    • /
    • pp.139-147
    • /
    • 2012
  • Mongolia's solar-meteorological resources map has been developed using satellite data and reanalysis data. Solar radiation was calculated using solar radiation model, in which the input data were satellite data from SRTM, TERA, AQUA, AURA and MTSAT-1R satellites and the reanalysis data from NCEP/NCAR. The calculated results are validated by the DSWRF (Downward Short-Wave Radiation Flux) from NCEP/NCAR reanalysis. Mongolia is composed of mountainous region in the western area and desert or semi-arid region in middle and southern parts of the country. South-central area comprises inside the continent with a clear day and less rainfall, and irradiation is higher than other regions on the same latitude. The western mountain region is reached a lot of solar energy due to high elevation but the area is covered with snow (high albedo) throughout the year. The snow cover is a cause of false detection from the cloud detection algorithm of satellite data. Eventually clearness index and solar radiation are underestimated. And southern region has high total precipitable water and aerosol optical depth, but high solar radiation reaches the surface as it is located on the relatively lower latitude. When calculated solar radiation is validated by DSWRF from NCEP/NCAR reanalysis, monthly mean solar radiation is 547.59 MJ which is approximately 2.89 MJ higher than DSWRF. The correlation coefficient between calculation and reanalysis data is 0.99 and the RMSE (Root Mean Square Error) is 6.17 MJ. It turned out to be highest correlation (r=0.94) in October, and lowest correlation (r=0.62) in March considering the error of cloud detection with melting and yellow sand.

Research Trends on Estimation of Soil Moisture and Hydrological Components Using Synthetic Aperture Radar (SAR를 이용한 토양수분 및 수문인자 산출 연구동향)

  • CHUNG, Jee-Hun;LEE, Yong-Gwan;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.26-67
    • /
    • 2020
  • Synthetic Aperture Radar(SAR) is able to photograph the earth's surface regardless of weather conditions, day and night. Because of its possibility to search for hydrological factors such as soil moisture and groundwater, and its importance is gradually increasing in the field of water resources. SAR began to be mounted on satellites in the 1970s, and about 15 or more satellites were launched as of 2020, which around 10 satellites will be launched within the next 5 years. Recently, various types of SAR technologies such as enhancement of observation width and resolution, multiple polarization and multiple frequencies, and diversification of observation angles were being developed and utilized. In this paper, a brief history of the SAR system, as well as studies for estimating soil moisture and hydrological components were investigated. Up to now hydrological components that can be estimated using SAR satellites include soil moisture, subsurface groundwater discharge, precipitation, snow cover area, leaf area index(LAI), and normalized difference vegetation index(NDVI) and among them, soil moisture is being studied in 17 countries in South Korea, North America, Europe, and India by using the physical model, the IEM(Integral Equation Model) and the artificial intelligence-based ANN(Artificial Neural Network). RADARSAT-1, ENVISAT, ASAR, and ERS-1/2 were the most widely used satellite, but the operation has ended, and utilization of RADARSAT-2, Sentinel-1, and SMAP, which are currently in operation, is gradually increasing. Since Korea is developing a medium-sized satellite for water resources and water disasters equipped with C-band SAR with the goal of launching in 2025, various hydrological components estimation researches using SAR are expected to be active.