• Title/Summary/Keyword: Snake model

Search Result 96, Processing Time 0.028 seconds

MODIFIED DOUBLE SNAKE ALGORITHM FOR ROAD FEATURE UPDATING OF DIGITAL MAPS USING QUICKBIRD IMAGERY

  • Choi, Jae-Wan;Kim, Hye-Jin;Byun, Young-Gi;Han, You-Kyung;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.234-237
    • /
    • 2007
  • Road networks are important geospatial databases for various GIS (Geographic Information System) applications. Road digital maps may contain geometric spatial errors due to human and scanning errors, but manually updating roads information is time consuming. In this paper, we developed a new road features updating methodology using from multispectral high-resolution satellite image and pre-existing vector map. The approach is based on initial seed point generation using line segment matching and a modified double snake algorithm. Firstly, we conducted line segment matching between the road vector data and the edges of image obtained by Canny operator. Then, the translated road data was used to initialize the seed points of the double snake model in order to refine the updating of road features. The double snake algorithm is composed of two open snake models which are evolving jointly to keep a parallel between them. In the proposed algorithm, a new energy term was added which behaved as a constraint. It forced the snake nodes not to be out of potential road pixels in multispectral image. The experiment was accomplished using a QuickBird pan-sharpened multispectral image and 1:5,000 digital road maps of Daejeon. We showed the feasibility of the approach by presenting results in this urban area.

  • PDF

A building roof detection method using snake model in high resolution satellite imagery

  • Ye Chul-Soo;Lee Sun-Gu;Kim Yongseung;Paik Hongyul
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.241-244
    • /
    • 2005
  • Many building detection methods mainly rely on line segments extracted from aerial or satellite imagery. Building detection methods based on line segments, however, are difficult to succeed in high resolution satellite imagery such as IKONOS imagery, for most buildings in IKONOS imagery have small size of roofs with low contrast between roof and background. In this paper, we propose an efficient method to extract line segments and group them at the same time. First, edge preserving filtering is applied to the imagery to remove the noise. Second, we segment the imagery by watershed method, which collects the pixels with similar intensities to obtain homogeneous region. The boundaries of homogeneous region are not completely coincident with roof boundaries due to low contrast in the vicinity of the roof boundaries. Finally, to resolve this problem, we set up snake model with segmented region boundaries as initial snake's positions. We used a greedy algorithm to fit a snake to roof boundary. Experimental results show our method can obtain more .correct roof boundary with small size and low contrast from IKONOS imagery. Snake algorithm, building roof detection, watershed segmentation, edge-preserving filtering

  • PDF

Segmentation Algorithm for Wafer ID using Active Multiple Templates Model

  • Ahn, In-Mo;Kang, Dong-Joong;Chung, Yoon-Tack
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.839-844
    • /
    • 2003
  • This paper presents a method to segment wafer ID marks on poor quality images under uncontrolled lighting conditions of the semiconductor process. The active multiple templates matching method is suggested to search ID areas on wafers and segment them into meaningful regions and it would have been impossible to recognize characters using general OCR algorithms. This active template model is designed by applying a snake model that is used for active contour tracking. Active multiple template model searches character areas and segments them into single characters optimally, tracking each character that can vary in a flexible manner according to string configurations. Applying active multiple templates, the optimization of the snake energy is done using Greedy algorithm, to maximize its efficiency by automatically controlling each template gap. These vary according to the configuration of character string. Experimental results using wafer images from real FA environment are presented.

  • PDF

Visual Tracking Algorithm Using the Active Bar Models (능동 보모델을 이용한 영상추적 알고리즘)

  • 이진우;이재웅;박광일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1220-1228
    • /
    • 1995
  • In this paper, we consider the problems of tracking an object in a real image. In evaluating these problems, we explore a new technique based on an active contour model commonly called a snake model, and propose the active bar models to represent target. Using this model, we simplified the target welection problems, reduced the search space of energy surface, and obtained the better performances than those of snake model. This approach improves the numerical stability and the tendency for points to bunch up and speed up the computational efficiency. Representing the object by active bar, we can easily obtain the zeroth, the first, and the second moment and it facilitates the target tracking. Finally, we present the good result for the visual tracking problem.

Omni-tread Type Snake Robot: Mathematical Modeling and Implementation (Omni-tread 뱀 로봇 모델링 및 개발)

  • Oh, Sang-Jin;Lee, Ji-Hong;Choi, Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.1022-1028
    • /
    • 2008
  • This article presents an omni-tread snake robot that designed to locomote on narrow space and rough terrain. The omni-tread snake robot comprises three segment, which are linked to each other by 2 degrees of freedom joints for the pitch and yaw motion. Moving tracks on all four sides of each segment guarantee propulsion even when the robot rolls over. The 2 DOF joint are actuated by 2 servo motors which produce sufficient torque to lift the one leading or trailing segments up and overcome obstacles. This paper applies articulated steering technique to get omni-tread snake robot's kinematics model.

Analysis on the Snake Motion of One Freight Car for High Speed Running (고속주행을 위한 화차 한량의 사행동 해석)

  • 이승일;최연선
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.3
    • /
    • pp.149-155
    • /
    • 2003
  • The development of railway vehicles involves the proper selection of design parameters not only to achieve high speed but also to reduce the vibration of the train. In this study an analytical model of a freight car is developed to find the critical speed. The freight car can generate the snake motion of the lateral and yawing motion of the car body, the bogie, and the wheelset. Numerical analysis for the nonlinear equation motions with 17 degrees of freedom showed the running stability and critical speed due to the snake motion. Also, the vibration modes of the freight car was calculated using ADAMS/RAIL, which showed that the critical speed have the yawing modes of the car body and the bogie. Finally this paper shows that the snake motion of the vehicle can be controlled with the modifications of the design parameters.

Active Fusion Model with Robustness against Partial Occlusions (부분적 폐색에 강건한 활동적 퓨전 모델)

  • Lee Joong-Jae;Lee Geun-Soo;Kim Gye-Young
    • The KIPS Transactions:PartB
    • /
    • v.13B no.1 s.104
    • /
    • pp.35-46
    • /
    • 2006
  • The dynamic change of background and moving objects is an important factor which causes the problem of occlusion in tracking moving objects. The tracking accuracy is also remarkably decreased in the presence of occlusion. We therefore propose an active fusion model which is robust against partial occlusions that are occurred by background and other objects. The active fusion model is consisted of contour-based md region-based snake. The former is a conventional snake model using contour features of a moving object and the latter is a regional snake model which considers region features inside its boundary. First, this model classifies total occlusion into contour and region occlusion. And then it adjusts the confidence of each model based on calculating the location and amount of occlusion, so it can overcome the problem of occlusion. Experimental results show that the proposed method can successfully track a moving object but the previous methods fail to track it under partial occlusion.

Digital Endoscopic Image Segmentation using Deformable Models

  • Yoon, Sung-Won;Kim, Jeong-Hoon;Lee, Myoung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.57.4-57
    • /
    • 2002
  • $\textbullet$ Image segmentation is an essential technique of image analysis. In spite of the traditional issues in contour initialization and boundary concavities, active contour models(snakes) are popular and known as successful methods for segmentation. $\textbullet$ We could find in experiment that snake using Gaussian External Force is fast in time but low in accuracy and snake using Gradient Vector Flow by Chenyang Xu and Jerry L. Prince is high in accuracy but slow in time. $\textbullet$ In this paper, we presented a new active contour model, GGF snake, for segmentation of endoscopic image. Proposed GGF snake made up for the defects of the traditional snakes in contour initialization and boundary...

  • PDF

Analysis of the Snake motion of One High Speed Freight Car (고속화차 한량의 사행동 해석)

  • 이승일;최연선
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.193-201
    • /
    • 2002
  • The development of railway vehicle and bogie involves the proper selection of design parameters not only to achieve high speed but also to reduce the vibration of the train. In this study an analytical model of a high speed freight car is developed to find the critical speed. The high speed freight car can generate the snake motion of the lateral and yawing motion of the car body, the bogie, and the wheelset. Numerical analysis for the nonlinear equation motions with 17 degrees of freedom showed the running stability and critical speed due to the snake motion. Also, the vibration modes of tile high speed freight car was calculated using ADAMS RAIL, which showed that the critical speed have the yawing modes of the car body and the bogie. Finally, this paper shows that the snake motion of the vehicle can be controlled with the modifications of the design parameters.

  • PDF

A Boundary Extraction Method Based on Active Contour Model and Dynamic Programming (능동 윤곽선 모델을 이용한 경계선 추출과 다이나믹 프로그래밍)

  • 김령주;김영철;최흥국
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.282-285
    • /
    • 2002
  • 의료영상에서 윤곽선의 추출은 관심영역 대한 객관적인 수치 즉 면적, 부피, 장단축의 길이 등을 분석하고 3차원 재구성을 위해 선행되어야 하는 중요한 과정이다. 현재 윤곽선 추출에 대한 않은 방법들이 개발 중에 있으나 이 방법들은 한계를 지니고 있어 더 높은 수준의 처리가 요구된다. 본 논문에서는 active contour model(snake)을 이용하여 MR뇌 영상에서 종양을 추출하였다. Snake의 에너지 최적화 문제를 dynamic programming을 사용하여 개선하였으며 canny edge detection을 이용하여 잡음에 덜 민감하도록 하였다.

  • PDF