• Title/Summary/Keyword: SnSe

Search Result 198, Processing Time 0.028 seconds

Recent Studies on Performance Enhancement of Polycrystal SnSe Thermoelectric Materials (다결정 SnSe 열전 재료의 성능 개선 연구 동향)

  • Jung, Myeong Jun;Choi, Byung Joon
    • Journal of Powder Materials
    • /
    • v.29 no.2
    • /
    • pp.152-158
    • /
    • 2022
  • Thermoelectric materials can reversely convert heat and electricity into each other; therefore, they can be very useful for energy harvesting from heat waste. Among many thermoelectrical materials, SnSe exhibits outstanding thermoelectric performance along the particular direction of a single crystal. However, single-crystal SnSe has poor mechanical properties and thus it is difficult to apply for mass production. Therefore, polycrystalline SnSe materials may be used to replace single-crystal SnSe by overcoming its inferior thermoelectric performance owing to surface oxidation. Considerable efforts are currently focused on enhancing the thermoelectric performance of polycrystalline SnSe. In this study, we briefly review various enhancement methods for SnSe thermoelectric materials, including doping, texturing, and nano-structuring. Finally, we discuss the future prospects of SnSe thermoelectric powder materials.

Characterization of Cu2ZnSnSe4 Thin Films Selenized with Cu2-xSe/SnSe2/ZnSe and Cu/SnSe2/ZnSe Stacks

  • Munir, Rahim;Jung, Gwang Sun;Ko, Young Min;Ahn, Byung Tae
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.183-189
    • /
    • 2013
  • $Cu_2ZnSn(S,Se)_4$ material is receiving an increased amount of attention for solar cell applications as an absorber layer because it consists of inexpensive and abundant materials (Zn and Sn) instead of the expensive and rare materials (In and Ga) in $Cu(In,Ga)Se_2$ solar cells. We were able to achieve a cell conversion efficiency to 4.7% by the selenization of a stacked metal precursor with the Cu/(Zn + Sn)/Mo/glass structure. However, the selenization of the metal precursor results in large voids at the absorber/Mo interface because metals diffuse out through the top CZTSe layer. To avoid the voids at the absorber/Mo interface, binary selenide compounds of ZnSe and $SnSe_2$ were employed as a precursor instead of Zn and Sn metals. It was found that the precursor with Cu/$SnSe_2$/ZnSe stack provided a uniform film with larger grains compared to that with $Cu_2Se/SnSe_2$/ZnSe stack. Also, voids were not observed at the $Cu_2ZnSnSe_4$/Mo interface. A severe loss of Sn was observed after a high-temperature annealing process, suggesting that selenization in this case should be performed in a closed system with a uniform temperature in a $SnSe_2$ environment. However, in the experiments, Cu top-layer stack had more of an effect on reducing Sn loss compared to $Cu_2Se$ top-layer stack.

Optical Properties of Undoped and Doped$Zn_4SnSe_6$Single Crystals ($Zn_4SnSe_6$$Zn_4SnSe_6:Co^{2+}$단결정의 광학적 특성연구)

  • 이기형;김덕태;박광호;현승철;김형곤;김남오
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.1
    • /
    • pp.1-5
    • /
    • 2003
  • Zn$_4$SnSe$_{6}$ and Zn$_4$SnSe$_{6}$ :Co$^{2+}$ single crystals were by the chemical transport reaction method. They crystallized in the monoclinic structure. The direct energy band gaps of the Zn$_4$SnSe$_{6}$ and Zn$_4$SnSe$_{6}$ :Co$^{2+}$single crystals at 289k were found to be 2.146eV and 2.042eV. Optical absorption due to impurity in the Zn$_4$SnSe$_{6}$ :Co$^{2+}$single crystal was observed and described as originating from the electron transition between energy levels of Co$^{2+}$ion sited at T$_{d}$ symmetry point.y point.

Temperature dependence of thermodynamic function in Zn4SnSe6 and Zn4SnSe6:Co2+(0.5mol%) single crystals (Zn2SnSe6 및 Zn4SnSe6:Co2+(0.5mol%) 단결정에서 열역학적 함수의 온도의존성)

  • Kim, Nam-Oh;Kim, Hyung-Gon;Kim, Duck-Tea;Sung, Heo-Jun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.2
    • /
    • pp.68-73
    • /
    • 2003
  • $Zn_4SnSe_6$ and $Zn_4SnSe_6:Co^{2+}$ single crystals were grown by the chemical transport reaction(CTR) method. They were crystallized in the monoclinic structure. These temperature dependence of the optical energy gap were closely investigated over the temperature range 10[K]~300[K]. The direct energy gaps of $Zn_4SnSe_6$ and $Zn_4SnSe_6$:$Co^{2+}$ single crystals were given by 2.146[eV] and 2.042[eV] at 300[K]. The temperature dependence of the optical energy gap is well presented by the Varshni equation.

Optical properties of $Ag_2CdSnSe_4$ and $Ag_2CdSnSe_4:CO^{2+}$ single crystals ($Ag_2CdSnSe_4$$Ag_2CdSnSe_4:Co^{+2}$단결정의 광학적 특성)

  • 이충일
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.16-21
    • /
    • 2001
  • Optical properties of $Ag_2CdSnSe_4$ and $Ag_2CdSnSe_4:Co^{+2}$ quaternary semiconductor single crystals grown by the chemical transport reaction method were investigated. The analysis of the X - ray powder diffraction measurements showed that these crystals have a wurtzite structure with lattice constants a = 4.357 $\AA$, c = 7.380 $\AA$, for $Ag_2CdSnSe_4$ and a = 4.885 $\AA$, c = 7.374 $\AA$, for $Ag_2CdSnSe_4:CO^{2+}$. The direct band gap at 298K, obtained from the optical absorption measurement, is found to be 1.21 eV for $Ag_2CdSnSe_4$ and 1.02 eV for $Ag_2CdSnSe_4:CO^{2+}$. The shrinkage of the band gap due to Co-doping is observed and is about 190 meV, We observed four absorption bands of $Co^{2+}$ ions in two near infrared regions of optical absorption spectra of $Ag_2CdSnSe_4$:$Co^{+2}$. These absorption bands were assigned as due to electronic transitions between the split energy levels of $Co^{2+}$ ions in $T_d$ crystal field under spin-orbit interactions.

  • PDF

Effect of Pre-annealing on the Formation of Cu2ZnSn(S,Se)4 Thin Films from a Se-containing Cu/SnSe2/ZnSe2 Precursor

  • Ko, Young Min;Kim, Sung Tae;Ko, Jae Hyuck;Ahn, Byung Tae;Chalapathy, R.B.V.
    • Current Photovoltaic Research
    • /
    • v.10 no.2
    • /
    • pp.39-48
    • /
    • 2022
  • A Se-containing Cu/SnSe2/ZnSe precursor was employed to introduce S to the precursor to form Cu2ZnSn(S,Se)4 (CZTSSe) film. The morphology of CZTSSe films strongly varied with two different pre-annealing environments: S and N2. The CZTSSe film with S pre-annealing showed a dense morphology with a smooth surface, while that with N2 pre-annealing showed a porous film with a plate-shaped grains on the surface. CuS and Cu2Sn(S,Se)3 phases formed during the S pre-annealing stage, while SnSe and Cu2SnSe3 phases formed during the N2 pre-annealing stage. The SnSe phase formed during N2 pre-annealing generated SnS2 phase that had plate shape and severely aggravated the morphology of CZTSSe film. The power conversion efficiency of the CZTSSe solar cell with S pre-annealing was low (1.9%) due to existence of Zn(S.Se) layer between CZTSSe and Mo substrate. The results indicated that S pre-annealing of the precursor was a promising method to achieve a good morphology for large area application.

Syntheses of Cu2SnSe3 and Their Transformation into Cu2ZnSnSe4 Nanoparticles with Tunable Band Gap under Multibubble Sonoluminescence Conditions

  • Park, Jongpil;Lee, Won Young;Hwang, Cha Hwan;Kim, Hanggeun;Kim, Youngkwon;Shim, Il-Wun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2331-2334
    • /
    • 2014
  • $Cu_2SnSe_3$ (CTSe) and $Cu_2ZnSnSe_4$ (CZTSe) nanoparticles were synthesized by sonochemical reactions under multibubble sonoluminescence (MBSL) conditions. First, $Cu_2SnSe_3$ nanoparticles were synthesized by the sonochemical method with an 85% yield, using CuCl, $SnCl_2$, and Se. Second, ZnSe was coated on the CTSe nanoparticles by the same method. Then, they were transformed into CZTSe nanoparticles of 5-7 nm diameters by heating them at $500^{\circ}C$ for 1 h. The ratios between Zn and Sn could be controlled from 1 to 3.75 by adjusting the relative concentrations of CTSe and ZnSe. With relatively lower Zn:Sn ratios (0.75-1.26), there are mostly CZTSe nanoparticles but they are believed to include very small amount of CTS and ZnSe particles. The prepared nanoparticles show different band gaps from 1.36 to 1.47 eV depending on the Zn/Sn ratios. In this sonochemical method without using any toxic or high temperature solvents, the specific stoichiometric element Zn/Sn ratios in CZTSe were controllable on demand and their experimental results were always reproducible in separate syntheses. The CZTSe nanoparticles were investigated by using X-ray diffractometer, a UV-Vis spectrophotometer, scanning electron microscope, Raman spectroscopy, and a high resolution-transmission electron microscope.

Optical properties of undoped and $Zn_4SnSe_6$ and $Zn_4SnSe_6:Co^{2+}$ Single Crystals ($Zn_4SnSe_6$$Zn_4SnSe_6:Co^{2+}$단결정의 광학적 특성연구)

  • Kim, Nam-Oh;Kim, Hyung-Gon;Kim, Byung-Chul;Kim, Myeong-Soo;Oh, Guem-Kon
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1599-1602
    • /
    • 2002
  • $Zn_4SnSe_6$ and $Zn_4SnSe_6:Co^{2+}$ single crystals were by the chemical transport reaction method. They crystallized in the monoclinic structure. The direct energy band gaps of the $Zn_4SnSe_6$ and $Zn_4SnSe_6:Co^{2+}$ single crystals at 289K were found to be 2.146eV and 2.042eV. Optical absorption due to impurity in the $Zn_4SnSe_6:Co^{2+}$ single crystal was observed and described as originating from the electron transition between energy leveles of $Co^{2+}$ sited at $T_d$ symmetry point.

  • PDF

Synthesis of $Cu_2ZnSnSe_4$ compound by solid state reaction using elemental powders

  • Wibowo, Rachmat Adhi;Alfaruqi, Muhammad H.;Jung, Woon-Hwa;Kim, Kyoo-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.134-137
    • /
    • 2009
  • Commercially available elemental powders of Cu, Zn, Sn and Se were employed for crystallizing a stannite-type $Cu_2ZnSnSe_4$ compound by means of solid state reaction. $Cu_2ZnSnSe_4$ reaction chemistry was also modeled based on differential-thermal analysis and X-ray powder diffraction results. It was observed that Se tends to react preferably with Cu to form CuSe and $CuSe_2$ phases at low reaction temperature. The formation of $Cu_5Zn_8$ intermetallic phase was found to be the intermediate reaction path for the binary ZnSe formation. A solid state reaction at $320^{\circ}C$ reacted elemental powderst obinary selenides of CuSe, ZnSe and SnSe completely. The crystallization of $Cu_2ZnSnSe_4$ was was detected to begin at $300^{\circ}C$ and its weight fraction increased with an increase of reaction temperature, which most probably formed from the reaction between $Cu_2SnSe_3$ and ZnSe.

  • PDF

Optical Properties of Undoped and Co-doped $Cd_4SnSe_6$ Single Crystals ($Cd_4SnSe_6$$Cd_4SnSe_6 :Co^{2+}$ 단결정의 광학적 특성)

  • 한석룡;김화택
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.4
    • /
    • pp.486-490
    • /
    • 1993
  • Cd4SnSea6 & Cd4SnSe6 : Co2+ single crystals were grown by the chemical transport reaction (CTR) method. The grown single crystlas crrystallize in the monoclinic structrue and have the direct band gaps. The energy gaps of them are 1.68eV for Cd4SnSea6 & Cd4SnSe6 : Co2+ at 293K. The impurity opticla absorption peaks due to cobalt dped with impurity appear at 4879cm-1, 5392cm-1 and 6247 com-1, and are attributed to the electron transitions between the split energy levels of Co2+ ion sited at Td symmetry of Cd4SnSe6 single crystal.

  • PDF