• Title/Summary/Keyword: SnO2 thin films

Search Result 303, Processing Time 0.027 seconds

Ferroelectric properties of $Pb[(Zr,Sn)Ti]NbO_3$ Thin Films by Annealing (열처리에 따른 $Pb[(Zr,Sn)Ti]NbO_3$ 박막의 강유전 특성)

  • 최우창;최혁환;이명교;권태하
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.24-27
    • /
    • 2000
  • Ferroelectric P $b_{0.99}$〔(Z $r_{0.6}$S $n_{0.4}$)$_{0.9}$ $Ti_{0.1}$$_{0.98}$N $b_{0.02}$ $O_3$(PNZST) thin films were deposited by a RF magnetron sputtering on (L $a_{0.5}$S $r_{0.5}$)Co $O_3$(LSCO)/Pt/Ti/ $SiO_2$/Si substrate using a PNZST target with excess PbO of 10 mole%. The thin films deposited at the substrate temperature of 500 $^{\circ}C$ were crystallized to a perovskite phase after rapid thermal annealing(RTA) The thin films annealed at 650 $^{\circ}C$ for 10 seconds in air exhibited the good crystal structures and ferroelectric properties. The remanent polarization and coercive field of the PNZST capacitor were about 20 $\mu$C/$\textrm{cm}^2$ and 50 kV/cm, respectively. The reduction of the polarization after 2.2$\times$10$^{9}$ switching cycles was less than 10 %.0 %.%.0 %.0 %.

  • PDF

Effects of ZnO addition on Electrical Resistivity and Optical Transmittance of ITO Thin Film (ITO 박막의 전기저항과 광투과도 특성에 미치는 ZnO 첨가 효과)

  • Chae, Hong-Choi;Hong, Joo-Wha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.367-373
    • /
    • 2007
  • [ $In_2O_3-ZnO(IZO)$ ] and $In_2O_3-ZnO-SnO_2(IZTO)$ thin films were prepared on EAGLE 2000 glass webs in a Ar gas by RF-Magnetron sputtering. Electrical resistivity and optical transmittance of the films were investigated. IZO, IZTO film showed excellent optical transmittance of 85 % at the visible $400{\sim}$780 nm wavelength. Electrical properties of IZO film have $6.50{\times}10^{-4}{\Omega}cm$ (95 $In_2O_3$ : 5 ZnO wt.%) and $5.20{\times}10^{-4}{\Omega}cm$ (90 : 10 wt.%), IZTO film have $8.00{\times}10^{-4}{\Omega}cm$ (90 $In_2O_3$ : 3 ZnO : 7 $SnO_2$ wt.%) and $6.50{\times}10^{-4}{\Omega}cm$ (90 : 7 : 3 wt.%). Substitution of SnO to ZnO in ITO films showed slightly lower electrical conductivity than ITO film but showed similar optical transmittance.

Fabrication of Sb-doped $SnO_2$ transparent conducting films by sol-gel dip coating and their characteristics (솔-젤 Dip Coating에 의한 Sb-doped $SnO_2$ 투명전도막의 제조 및 특성)

  • 임태영;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.5
    • /
    • pp.241-246
    • /
    • 2003
  • The transparent conducting thin film of ATO (antimony-doped tin oxide) was successfully fabricated on$SiO_2$/glass substrate by a sol-gel dip coating method. The crystalline phase of the ATO thin film was identified as SnO$_2$ major phase and the film thickness was about 100 nm/layer at the withdrawal speed of 50 mm/minute. Optical transmittance and electrical resistivity of the 400 nm-thick ATO thin film which was annealed under nitrogen atmosphere were 84% and $5.0\times 10^{-3}\Omega \textrm{cm}$, respectively. It was found that the $SiO_2$ layer inhibited Na ion diffusion and the formation of impurities like $Na_2SnO_3$ or SnO while increasing Sb ion concentration and higher ratio of $Sb^{5+}/Sb^{3+}$in the film. Annealing at nitrogen atmosphere leads to the reduction of $Sn^{4+}$ as well as $Sb^{5+}$ resulting in decrease of the electrical resistivity of the film.

Fabrication and Characteristics of TO:F Thin Film Deposited by RF Magnetron Sputtering( I ) (고주파 마그네트론 스퍼터링법에 의해 제조된 TO:F 투명도전막의 제조 및 특성( I ))

  • Park, Ki-Cheol;Kim, Jeong-Gyoo
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.65-73
    • /
    • 1994
  • TO:F($SnO_{2}:F$) thin films were prepared by RF magnetron sputtering system. The dependence of their structural, electrical, and optical properties on deposition conditions such as substrate temperature, working pressure and power was studied. The optimum conditions of TO:F thin film are $SnF_{2}$ content of 15wt.% in target, RF power of 150W, substrate temperature of $150^{\circ}C$ and working pressure of 2mmTr. The resistivity and transmittance at 550nm in visible spectrum of the TO:F film deposited at optimum condition are $9{\times}10^{-4}{\Omega}{\cdot}cm$ and above 85%, respectively. For the films deposited from the target without $SnF_{2}$ and with 15wt.% $SnF_{2}$, the optical bandgaps calculated from the transmittance curves are 3.84 and 3.9eV, respectively. X-ray diffraction patterns showed that TO and TO:F films had tetragonal rutile structure with (101), (200) direction.

  • PDF

Electrical Characterization of Amorphous Zn-Sn-O Transistors Deposited through RF-Sputtering

  • Choi, Jeong-Wan;Kim, Eui-Hyun;Kwon, Kyeong-Woo;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.304.1-304.1
    • /
    • 2014
  • Flat-panel displays have been growing as an essential everyday product in the current information/communication ages in the unprecedented speed. The forward-coming applications require light-weightness, higher speed, higher resolution, and lower power consumption, along with the relevant cost. Such specifications demand for a new concept-based materials and applications, unlike Si-based technologies, such as amorphous Si and polycrystalline Si thin film transistors. Since the introduction of the first concept on the oxide-based thin film transistors by Hosono et al., amorphous oxide thin film transistors have been gaining academic/industrial interest, owing to the facile synthesis and reproducible processing despite of a couple of shortcomings. The current work places its main emphasis on the binary oxides composed of ZnO and SnO2. RF sputtering was applied to the fabrication of amorphous oxide thin film devices, in the form of bottom-gated structures involving highly-doped Si wafers as gate materials and thermal oxide (SiO2) as gate dielectrics. The physical/chemical features were characterized using atomic force microscopy for surface morphology, spectroscopic ellipsometry for optical parameters, X-ray diffraction for crystallinity, and X-ray photoelectron spectroscopy for identification of chemical states. The combined characterizations on Zn-Sn-O thin films are discussed in comparison with the device performance based on thin film transistors involving Zn-Sn-O thin films as channel materials, with the aim to optimizing high-performance thin film transistors.

  • PDF

Preparation and Characterization of $SnO_2$ Thin Film by Atomic Layer Deposition

  • Kwack, Young-Jin;Choi, Woon-Seop
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.250-250
    • /
    • 2009
  • Thin film of $SnO_2$ was fabricated from plasma enhanced atomic layer deposition technology with bubbler type injector system by using TEMASn (tetrakisethylmethylamino tin) precursor. Mostly crystalline of $SnO_2$ films can be obtained with oxygen plasma and with water at relatively low temperature of $150^{\circ}C$. $SnO_2$ was deposited as an uniform rate of $1.0A^{\circ}$/cycle. In order to obtain uniform film, a seed oxide material was used before TEMASn deposition in ALD process. The process parameters were controlled to obtain dense thin film by atomic deposition methodology. The morphology and characterization of thin film with optimized process condition will be discussed.

  • PDF

Characterization of $SnO_2$ Thin Films Prepared by Thermal-CVD (열화학증착법으로 제조된 $SnO_2$박막의 특성)

  • Ryu, Deuk-Bae;Lee, Su-Wan
    • Korean Journal of Materials Research
    • /
    • v.11 no.1
    • /
    • pp.15-19
    • /
    • 2001
  • Transparent and conducting tin oxide thin films were prepared on soda lime silicate glass by thermal chemical vapour deposition. Thin films were fabricated from mixtures of tetramethyltin (TMT) as a precursor, oxygen or oxygen containing ozone as an oxidant. The properties of fabricated tin oxide films are highly changed with variations of substrate temperature. Optimized thin films could be prepared on TMT, which flow rate of 8 sccm, oxygen flow rate of 150 sccm and substrate temperature of 38$0^{\circ}C$. We reduced deposition temperature about$ 180^{\circ}C$ by using of oxygen containing ozone instead of pure oxygen and resistivity of thin films was decreased from ~ ${\times}10^{-2}{\Omega}cm$ to ~${\times}10^{-3}{\Omega}cm$.

  • PDF

Influence of Ag Interlayer on the Optical and Electrical Properties of SnO2 Thin Films (Ag 중간층이 SnO2 박막의 광학적, 전기적 특성에 미치는 영향)

  • Jang, Jin-Kyu;Kim, Hyun-Jin;Choi, Jae-Wook;Lee, Yeon-Hak;Heo, Sung-Bo;Kim, Yu-Sung;Kong, Young-Min;Kim, Daeil
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.3
    • /
    • pp.119-123
    • /
    • 2021
  • SnO2 single layer and SnO2/Ag/SnO2 (SAS) tri-layered films were deposited on the glass substrate by RF and DC magnetron sputtering at room temperature and then the effect of Ag interlayer on the opto-electrical performance of the films were considered. As deposited SnO2 films show a visible transmittance of 85.5 % and a sheet resistance of 1.2×104 Ω/□, the SAS films with a 15 nm thick Ag interlayer show a lower resistance of 18.8 Ω/□ and a visible transmittance of 70.6 %, respectively. The figure of merit based on the optical transmittance and sheet resistance revealed that the Ag interlayer in the SnO2 films enhances the opto-electrical performance without substrate heating or annealing process.