• Title/Summary/Keyword: SnAg

Search Result 625, Processing Time 0.022 seconds

Current Status of Pyrometallurgical Process for the Reclamation of Urban Ore (도시광석(都市鑛石) 재자원화(再資源化)를 위한 건식공정(乾式工程)의 현황(現況))

  • Kim, Byung-Su;Lee, Jae-Chun;Shin, Do-Yeoun;Jeoung, Jin-Ki;Rhee, Kang-In;Sohn, Jeong-Soo;Yang, Dong-Hyo;Kim, Min-Seuk;Kim, Soo-Kyung
    • Resources Recycling
    • /
    • v.21 no.2
    • /
    • pp.3-8
    • /
    • 2012
  • In the points of the environmental conservation and the recirculating utilization of limited resources, it is very important to recover valuable metals like Au, Ag, Pd, Cu, Sn, Ni, Co, and Li used as industrial raw materials from urban ores. From now, many processes have been developed for recovering the valuable metals contained in urban ores and some of them have been operated commercially. In the paper, pyrometallurgical processes developed for reclaiming valuable metals from urban ores will be briefly introduced.

Influence of the Amount of Conductive Paste on the Electrical Characteristics of c-Si Photovoltaic Module (전도성 페이스트 도포량 변화에 따른 결정질 태양광 모듈의 전기적 특성에 대한 영향성 분석)

  • Kim, Yong Sung;Lim, Jong Rok;Shin, Woo Gyun;Ko, Suk-Whan;Ju, Young-Chul;Hwang, Hye Mi;Chang, Hyo Sik;Kang, Gi-Hwan
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.720-726
    • /
    • 2019
  • Recently, research on cost reduction and efficiency improvement of crystalline silicon(c-Si) photovoltaic(PV) module has been conducted. In order to reduce costs, the thickness of solar cell wafers is becoming thinner. If the thickness of the wafer is reduced, cracking of wafer may occur in high temperature processes during the c-Si PV module manufacturing process. To solve this problem, a low temperature process has been proposed. Conductive paste(CP) is used for low temperature processing; it contains Sn57.6Bi0.4Ag component and can be electrically combined with solar cells and ribbons at a melting point of $150^{\circ}C$. Use of CP in the PV module manufacturing process can minimize cracks of solar cells. When CP is applied to solar cells, the output varies with the amount of CP, and so the optimum amount of CP must be found. In this paper, in order to find the optimal CP application amount, we manufactured several c-Si PV modules with different CP amounts. The amount control of CP is fixed at air pressure (500 kPa) and nozzle diameter 22G(outer diameter 0.72Ø, inner 0.42Ø) of dispenser; only speed is controlled. The c-Si PV module output is measured to analyze the difference according to the amount of CP and analyzed by optical microscope and Alpha-step. As the result, the optimum amount of CP is 0.452 ~ 0.544 g on solar cells.

Effects of Solder Particle Size on Rheology and Printing Properties of Solder Paste (미세피치 접합용 솔더 페이스트의 솔더 분말 크기에 따른 레올로지 및 인쇄 특성 평가)

  • Jun, So-Yeon;Lee, Tae-Young;Park, So-Jeong;Lee, Jonghun;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.91-97
    • /
    • 2022
  • The wettability and rheological properties of solder paste with the size of the solder powder were evaluated. To formulate the solder paste, three types of solder powder were used: T4 (20~28 ㎛), T5 (15~25 ㎛), and T6 (5~15 ㎛). The viscosities of the T4, T5, and T6 solder pastes at 10 RPM were 155, 263, and 418 Pa·s, respectively. After 7 days, the viscosity of the T4 solder paste slightly increased by 2.6% and that of T5 was increased by 20.6%. The viscosity of the T6 solder paste after 7 days could not be measured due to high viscosity. The viscosity variation with solder particle size also affected on the printability of the solder. In the case of the T4 solder paste, printability, slump, bridging, and soldering properties were excellent. On the other hand, T5 showed slight dewetting and solder ball defects. Especially, T6, which the smallest powder size, showed poor printability and dewetting at the edge of solder.

Purification and Enzymatic Characteristics of the Bacillus pasteurii Urease Expressed in Escherichia coli (Escherichia coli에서 발현된 Recombinant Bacillus pasteurii Urease의 정제 및 효소학적 특성)

  • 이은탁;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.5
    • /
    • pp.519-526
    • /
    • 1992
  • The gene coding for urease of alkalophilic Bacillus pasteurii had been cloned in Escherichia coli previously. The urease protein was purified 63.1-fold by TEAE-cellulose, DEAE-Sephadex A-50, Sephadex G-150 and Sephadex G-200 chromatographies with a 7.3% yield from the sonicated fluid of the E. coli HB1Ol(pBUll) encoding B. pasteurii urease gene. The ureases of E. coli (pBUll) and B. pasteurii possessed as a $K_m$ for urea, 42.1 mM and 40.4 mM, respectively. They hydrolyzed urea with $V_{max}$ of 86.9$\mu$mol/min and 160$\mu$mol/min, respectively. Both ureases were composed with four subunits (Mrs 67,000) and a subunit (Mr 20,000). The molecular weight of both native enzymes was Mr 280,OOO$pm$10,000 determined by gel filtration chromatography and Coomassie blue staining of the subunits. The optimal reaction pH of both ureases were pH 7.5. The ureases were stabled in pH 5.5-10.5. The optimal reaction temperature of both ureases were $60^{\circ}C$, and the ureases were stable for an hour at $50^{\circ}C$, 40min at $60^{\circ}C$ and 10 min at $70^{\circ}C$ The activity of both enzymes were inhibited completely by $Ag^{2+}$, $Hg^{2+}$, $Zn^{2+}$, $Cu^{2+}$, and were inhibited 60% by CoH, 30% by $Fe^{2+}$ and 10% by $Pb^{2+}$. However it was increased by the addition of $Sn^{2+}$, $Mn^{2+}$, $Mg^{2+}$ at concentration of $1{\times}10^{-3}$M. Both ureases were inhibited completely by p-CMB and acetohydroxamic acid. The urease expressed in E. coli (pBU11) was inhibited 70% by SDS. The urease of B. pasteurii was inhibited 40% by hydroxyurea, whereas the recombinant urease of E. coli strain was inhibited 17%. Both enzymes were not inhibited by cyclohexanediaminetetraacetic acid (CDTA) and ethylendiaminetetraacetic acid (EDTA).

  • PDF

Geochemistry and Genesis of the Guryonsan(Ogcheon) Uraniferous Back Slate (구룡산(九龍山)(옥천(決川)) 함(含)우라늄 흑색(黑色) 점판암(粘板岩)의 지화학(地化學) 및 성인(成因))

  • Kim, Jong Hwan
    • Economic and Environmental Geology
    • /
    • v.22 no.1
    • /
    • pp.35-63
    • /
    • 1989
  • Geochemical characteristics of the Guryongsan (Ogcheon) uraniferous black slate show that this is an analogue to the conventional Chattanooga and Alum shales in occurrences. Whereas, its highest enrichment ratio in metals including uranium, among others, is explained by the cyclic sedimentation of the black muds and quartz-rich silts, and the uniform depositional condition with some what higher pH condition compared to the conditions of the known occurrences. The cyclic sedimentation, caused by the periodic open and close of the silled basin, has brought about the flush-out) of the uranium depleted water and the recharge with the new metal-rich sea water, which consequently contributed to the high concentration of metals in mud. The metal-rich marine black muds, which mostly occur in the early to middle Palaeozoic times, is attributed by the geologic conditions which related to the atmospheric oxygen contents, and these are scarcely met in the late Precambrian and/or with the onset of Palaeozoic era in the geologic evolution of the earth.

  • PDF