• Title/Summary/Keyword: Sn-Cu-Ni alloy

Search Result 51, Processing Time 0.023 seconds

Microstructural Feature and Aging Characteristics of Spray-Formed Cu-5Ni-10Sn Alloy (가스분무성형 Cu-5Ni-10Sn 합금의 미세조직 및 시효강화)

  • Roh, Dae-Gyun;Kang, Hee-Soo;Baik, Kyeong-Ho
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.317-321
    • /
    • 2012
  • In this study, Cu-5Ni-10Sn(wt%) spinodal alloy was manufactured by gas atomization spray forming, and the microstructural features and mechanical properties of Cu-5Ni-10Sn alloy have been investigated during homogenization, cold working and age-hardening. The spray formed Cu-5Ni-10Sn alloy consisted of an equiaxed microstructure with a mixture of solid solution ${\alpha}$-(CuNiSn) grains and lamellar-structure grains. Homogenization at $800^{\circ}C$ and subsequent rapid quenching formed a uniform solid solution ${\alpha}$-(CuNiSn) phase. Direct aging at $350^{\circ}C$ from the homogenized Cu-5Ni-10Sn alloy promoted the precipitation of finely distributed ${\gamma}$' or ${\gamma}-(Cu,Ni)_3Sn$ phase throughout the matrix, resulting in a significant increase in microhardness and tensile strength. Cold working prior to aging was effective in strengthening Cu-5Ni-10Sn alloy, which gave rise to a maximum tensile strength of 1165 MPa. Subsequent aging treatment slightly reduced the tensile strength to 1000-1100 MPa due to annealing effects.

The Properties and Processing of Bismuth and Indium Added Sn-Cu-Ni Solder Alloy System (Bi, In을 함유한 Sn-Cu-Ni계 솔더 합금 제조와 물성)

  • 박종원;최정철;최승철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.1
    • /
    • pp.21-28
    • /
    • 2002
  • Bismuth and Indium added Sn-Cu-Ni solder alloy was investigated for a new lead free solder. The thermal, electrical and mechanical properties were characterized for the Sn-0.7%(Cu+Ni) solder alloy by adding 2~5% Bi and 2~ 10% In. The melting point of solder alloy was in range of 200 to $222^{\circ}C$ and the mushy zone was in range of 20 to $37^{\circ}C$. This alloys could be adapted to middle and high temperature solder materials. A new solder alloy composition. Sn-0.7%(Cu+Ni) -3.5%Bi-2%In is very promising with high performance and effective cost. The melting point was $220^{\circ}C$, the mushy zone range was $25^{\circ}C$, and mechanical, electrical and wetting properties were competitive with those of other lead-free solder except the lower elongation value.

  • PDF

A Study on the Electrical and Optical Properties of SnO2/Cu(Ni)/SnO2 Multi-Layer Structures Transparent Electrode According to Annealing Temperature (열처리 온도에 따른 SnO2/Cu(Ni)/SnO2 다층구조 투명전극의 전기·광학적 특성)

  • Jeong, Ji-Won;Kong, Heon;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.134-140
    • /
    • 2019
  • Oxide ($SnO_2$)/metal alloy (Cu(Ni))/oxide ($SnO_2$) multilayer films were fabricated using the magnetron sputtering technique. The oxide and metal alloy were $SnO_2$ and Ni-doped Cu, respectively. The structural, optical, and electrical properties of the multilayer films were investigated using X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectrophotometry, and 4-point probe measurements, respectively. The properties of the $SnO_2/Cu(Ni)/SnO_2$ multilayer films were dependent on the thickness and Ni doping of the mid-layer film. Since Ni atoms inhibit the diffusion and aggregation of Cu atoms, the grain growth of Cu is delayed upon Ni addition. For $250^{\circ}C$, the Haccke's figure of merit (FOM) of the $SnO_2$ (30 nm)/Cu(Ni) (8 nm)/$SnO_2$ (30 nm) multilayer film was evaluated to be $0.17{\times}10^{-3}{\Omega}^{-1}$.

Microstructure and Tensile Properties of Spray Cast Cu-Sn-Ni-Si Alloy (가스분무주조 Cu-Sn-Ni-Si 합금의 미세조직 및 상온 인장성질)

  • Kang, Hee-Soo;Lee, Eon-Sik;Lee, Gyu-Chang;Baik, Kyeong-Ho
    • Journal of Powder Materials
    • /
    • v.17 no.6
    • /
    • pp.470-476
    • /
    • 2010
  • In this study, Cu-10Sn and Cu-10Sn-2Ni-0.2Si alloys have been manufactured by spray casting in order to achieve a fine scale microstructure and high tensile strength, and investigated in terms of microstructural evolution, aging characteristics and tensile properties. Spray cast alloys had a much lower microhardness than continuous cast billet because of an improved homogenization and an extended Sn solid solubility. Spray cast Cu-Sn-Ni-Si alloy was characterized by an equiaxed grain microstructure with a small-sized (Ni, Si)-rich precipitates. Cold rolling of Cu-Sn-Ni-Si alloy increased a tensile strength to 1220 MPa, but subsequent ageing treatment reduced a ultimate tensile strength to 780 MPa with an elongation of 18%.

Comparison of the Characteristics of Cu-Sn and Ni Pre-Plated Frames Prepared by Electro-Plating (전기도금된 Cu-Sn과 Ni preplated frame의 특성 비교)

  • Lee, D.H.;Jang, T.S.;Hong, S.S.;Lee, J.W.;Yang, H.W.;Hahn, B.K.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.6
    • /
    • pp.276-281
    • /
    • 2006
  • In order to improve the performance of PPFs (Pre-Plated Frames), a PPF that employed a Cu-Sn alloy instead of conventionally used Ni was developed and then its properties were investigated. It was found that the electoplated Cu-Sn alloy layer was a mixture of uniformly distributed fine crystallites, resulting In better wettability and crack resistance than those of Ni PPF. Moreover, as in Cu/Ni/Pd/Au PPF, migration of copper atoms from the base metal to the top of the Cu/Cu-Sn/Pd/Au PPF surface was not found although the Cu-Sn layer itself contained considerable amount of copper. It was expected that, by using the newly developed Cu-Sn PPF, any possible heat generation and signal interrupt caused by an external electro-magnetic field could be reduced because the Cu-Sn layer was paramagnetic, i.e., nonmagnetic.

Interfacial Reactions of Sn-Ag-Cu solder on Ni-xCu alloy UBMs (Ni-xCu 합금 UBM과 Sn-Ag계 솔더 간의 계면 반응 연구)

  • Han Hun;Yu Jin;Lee Taek Yeong
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.84-87
    • /
    • 2003
  • Since Pb-free solder alloys have been used extensively in microelectronic packaging industry, the interaction between UBM (Under Bump Metallurgy) and solder is a critical issue because IMC (Intermetallic Compound) at the interface is critical for the adhesion of mechanical and the electrical contact for flip chip bonding. IMC growth must be fast during the reflow process to form stable IMC. Too fast IMC growth, however, is undesirable because it causes the dewetting of UBM and the unstable mechanical stability of thick IMC. UP to now. Ni and Cu are the most popular UBMs because electroplating is lower cost process than thin film deposition in vacuum for Al/Ni(V)/Cu or phased Cr-Cu. The consumption rate and the growth rate of IMC on Ni are lower than those of Cu. In contrast, the wetting of solder bumps on Cu is better than Ni. In addition, the residual stress of Cu is lower than that of Ni. Therefore, the alloy of Cu and Ni could be used as optimum UBM with both advantages of Ni and Cu. In this paper, the interfacial reactions of Sn-3.5Ag-0.7Cu solder on Ni-xCu alloy UBMs were investigated. The UBMs of Ni-Cu alloy were made on Si wafer. Thin Cr film and Cu film were used as adhesion layer and electroplating seed layer, respectively. And then, the solderable layer, Ni-Cu alloy, was deposited on the seed layer by electroplating. The UBM consumption rate and intermetallic growth on Ni-Cu alloy were studied as a function of time and Cu contents. And the IMCs between solder and UBM were analyzed with SEM, EDS, and TEM.

  • PDF

A Study on Corrosion according to Distance between Amalgam and Dissimilar Metals (아말감과 이종(異種)금속의 거리에 따른 부식에 대한 고찰)

  • Kim, Ju-won;Jeong, Eun-gyeong
    • Journal of dental hygiene science
    • /
    • v.4 no.3
    • /
    • pp.103-109
    • /
    • 2004
  • The present study prepared 72 test samples - 24 made of amalgam alloy, 24 of Verabond (Ni-Cr alloy) for crown and 24 of Talladium $^{TM}alloy$ for denture - according to the manufacturers' manuals and general method in consideration of the width of the mesial-distal dental crown of the lower $1^{st}$ molar and MOD cavity in clinics, put them in a 200 ml beaker containing 80 ml of artificial saliva, and measured their galvanic corrosion at distances of 0 mm, 7 mm and 40 mm after 7 days. Isolated metals in the electrolyte such as Cu, Ag, Ni, Cr, Sn, Zn and Hg were quantitatively analyzed with Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES, JY-50P, VG Elemental Co. France), and from the results were drawn conclusions as follows. First, Cu, Sn, Ag, Hg and Zn were highly advantageous when amalgam contacted gold alloy compared to Ni-Cr alloy for crown and Talladium alloy for denture. In addition, although gold alloy was finest in terms of oral tissue and biocompatibility, it was most disadvantageous when it was with amalgam. Second, when amalgam contacted gold alloy, heavy metals such as Ni and Cr were not isolated at all because gold alloy did not contain such elements but Sn was isolated as much as $227.1{\pm}18.0035{\mu}g/cm^2$ although it was not included in the composition either. Hg was also isolated. These elements are assumed to have been isolated from amalgam itself. Third, when amalgam alloy was apart from gold alloy 0 mm, 7 mm and 40 mm, Cu and Ag showed significance but Hg did not. This suggests that gold alloy must not be used together with amalgam, and must not be used between dissimilar prostheses regardless of distance. Fourth, when amalgam alloy contacted Ni-Cr alloy for crown, Ag was not isolated from the amalgam, but Zn, Ni, Sn, Hg and Cu were isolated in order of quantity. Significance was observed according to distance - 0 mm, 7 mm and 40 mm. Hg was not isolated but heavy metals Ni and Cr were isolated. If amalgam alloy was in the opposite arch or it was apart from Ni-Cr alloy for crown, the isolation Hg was less than that when amalgam alloy contacted Ni-Cr alloy for crown. Fifth, when amalgam alloy contacted Talladium alloy for denture, significance was observed at distances of 0mm, 7 mm and 40 mm. Hg was not isolated but heavy metals Ni and Cr were isolated. If amalgam alloy was in the opposite arch or it was apart from Talladium alloy for denture, the isolation Hg was less than that when amalgam alloy contacted Talladium alloy for denture. Sixth, according to the result of ICPES test on Cu, Sn, Ag, Hg, Zn, Ni and Cr of amalgam alloy, gold ally, Verabond and Talladium alloy when these alloys contacted artificial saliva, significance was observed in Cu and Hg. Seventh, when amalgam alloy contracted two non-precious metals Ni-Cr alloy for crown and Talladium alloy for denture in artificial saliva, significance was observed in the isolated by-products of Hg, Ni and Cr according to distance.

  • PDF

Characteristics of Electroplated 90Sn10Cu, 99Sn1Cu Films (90Sn10Cu, 99Sn1Cu 도금막의 특성)

  • 김주연;김시중;배규식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.658-662
    • /
    • 2000
  • The microstructure, adhesion strength and conductivity of electroplated Sn-Cu Films on Alloy42 lead Frame were measured for comparison. In the case of electroplated 90Sn10Cu, 99Sn1Cu, Cu$\sub$10/Sn$_3$Phase was formed and Ni$_3$Sn$_2$Phase was formed after 200$^{\circ}C$, 30min annealing. In the case of electroplated 99Sn1Cu, Cu$\sub$10/Sn, Ni$_3$Sn phases were formed and Ni$_3$Sn$_4$, Ni$_3$Sn$_4$phases were formed after 200$^{\circ}C$, 30min annealing. 90Sn10Cu film was measured better uniformity, adhesion strength and conductivity than 99Sn1Cu.

  • PDF

Mechanical and Physical Property Changes of Cu-Ni-Si-Sn-Fe-P Copper Alloy System According to the Heat Treatment Conditions (열처리조건에 따른 Cu-Ni-Si-Sn-Fe-P 석출경화형 동합금계의 물성변화 특성)

  • Kim, Seung-Ho;Yum, Young-Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.5
    • /
    • pp.225-232
    • /
    • 2013
  • The influence of aging treatment, addition elements and rolling reduction ratio on the microstructure, mechanical, electrical and bendability properties of Cu-Ni-Si-P-x (x = Fe, Sn, Zn) alloys for connector material application was investigated. SEM/EDS analysis exhibited that Ni2-Si precipitates with a size of 20~100 nm were distributed in grains. Fe, Sn, Zn elemnets in Cu-Ni-Si-P alloy imporved the mechanical strength but it was not favor in increasing of electrical conductivity. As higher final rolling reduction ratio, the strength and electrical conductivity is increased after aging treatment, but it indicated excellent bendability. Especially, Cu-2Ni-0.4Si-0.5Sn-0.1Fe-0.03P alloy show the tensile strength value of 700MPa and the electrical conductivity was observed to reach a maximum of 40%IACS. It is optimal for lead frame and connector.

Microstructural Evolution and Tensile Properties of Cu-Sn Based Alloys Manufactured by Spray Casting Route (분무주조에 의해 제조된 Cu-Sn계 합금의 미세조직 및 인장성질)

  • Shim, Sang-Hyun;Kang, Hee-Soo;Baik, Kyeong-Ho
    • Journal of Powder Materials
    • /
    • v.17 no.6
    • /
    • pp.477-481
    • /
    • 2010
  • Cu-Sn based alloys were manufactured by gas atomization spray casting route in order to achieve a fine scale microstructure and a high tensile strength. The spray cast Cu-10Sn-2Ni-0.2Si alloy had an equiaxed grain microstructure, with no formation of brittle ${\delta}-Cu_{41}Sn_{11}$ phase. Aging treatment promoted the precipitation of finely distributed particles corresponding to ${\delta}-Ni_2Si$ intermetallic phase throughout the $\alpha$-(CuSn) matrix. The cold-rolled Cu-Sn-Ni-Si alloy had a very high tensile strength of 1200 MPa and an elongation of 5%. Subsequent aging treatment at $450^{\circ}C$ for 1h slightly reduced the tensile strength to 700 MPa and remarkably increased the elongation up to 30%. This result has been explained by coarsening the precipitates due to over aging and reducing the dislocation density due to annealing effects.