Browse > Article
http://dx.doi.org/10.4150/KPMI.2012.19.4.317

Microstructural Feature and Aging Characteristics of Spray-Formed Cu-5Ni-10Sn Alloy  

Roh, Dae-Gyun (Department of Nanomaterials Engineering, Chungnam National University)
Kang, Hee-Soo (Department of Nanomaterials Engineering, Chungnam National University)
Baik, Kyeong-Ho (Department of Nanomaterials Engineering, Chungnam National University)
Publication Information
Journal of Powder Materials / v.19, no.4, 2012 , pp. 317-321 More about this Journal
Abstract
In this study, Cu-5Ni-10Sn(wt%) spinodal alloy was manufactured by gas atomization spray forming, and the microstructural features and mechanical properties of Cu-5Ni-10Sn alloy have been investigated during homogenization, cold working and age-hardening. The spray formed Cu-5Ni-10Sn alloy consisted of an equiaxed microstructure with a mixture of solid solution ${\alpha}$-(CuNiSn) grains and lamellar-structure grains. Homogenization at $800^{\circ}C$ and subsequent rapid quenching formed a uniform solid solution ${\alpha}$-(CuNiSn) phase. Direct aging at $350^{\circ}C$ from the homogenized Cu-5Ni-10Sn alloy promoted the precipitation of finely distributed ${\gamma}$' or ${\gamma}-(Cu,Ni)_3Sn$ phase throughout the matrix, resulting in a significant increase in microhardness and tensile strength. Cold working prior to aging was effective in strengthening Cu-5Ni-10Sn alloy, which gave rise to a maximum tensile strength of 1165 MPa. Subsequent aging treatment slightly reduced the tensile strength to 1000-1100 MPa due to annealing effects.
Keywords
Cu-Ni-Sn; Spray forming; Cold working; Age hardening; Tensile strength;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. H. Baik, P. S. Grant and B. Cantor: Acta Materialia, 52 (2004) 199.   DOI   ScienceOn
2 W. A. Soffa and D. E. Laughlin: Prog. Mater. Sci., 49 (2004) 347.   DOI   ScienceOn
3 F. Kohler, L. Germond, J. D. Wagniere and M. Rappaz: Acta Mater., 57 (2009) 56.   DOI   ScienceOn
4 J. D. Hwang, B. J. Li, W. S. Hwang and C. T. Hu: J. Mater. Eng. Perform., 7 (1998) 495.   DOI   ScienceOn
5 S. H. Shim, H. S. Kang and K. H. Baik: J. Kor. Powder Metall. Inst., 17 (2010) 477.   DOI   ScienceOn
6 L. H. Schwartz, S. Mahajan and J. T. Plewes: Acta. Metall., 22 (1974) 601.   DOI   ScienceOn
7 R. K. Ray and S. C. Narayanan: Metall. Trans. 13A (1982) 565.
8 S. Suzuki, N. Shibutani, K. Mimura, M. Isshiki and Y. Waseda: J. Alloys Compounds, 417 (2006) 116.   DOI   ScienceOn
9 V. C. Srivastava, A. Schneider and V. Uhlenwinke: J. Mater. Proc. Tech., 147 (2004) 174.   DOI   ScienceOn
10 D. Zhao, Q. M. Dong, P. Liu, B. X. Kang, J. L. Huang and Z. H. Jin: Mater. Sci. Eng. A, A361 (2003) 93.   DOI   ScienceOn
11 P. Kratochvil, J. Mencl, J. Pesicka and S. N. Komnik: Acta Metall., 32 (1984) 1493.   DOI   ScienceOn
12 P. Sahu and S. K. Pradhan: M. De: J. Alloys Comp., 377 (2004) 103.   DOI   ScienceOn
13 J. C. Zhao and M. R. Notis: Acta Materialia, 46 (1998) 4203.   DOI   ScienceOn
14 P. Virtanen, T. Tiainen and T. Lepisto: Mater. Sci. Eng. A, 251 (1998) 269.   DOI   ScienceOn
15 Y. C. Jung, C. J. Kim, J. M. Lee and S. J. Han: J. Kor. Inst. Met. Mater., 36 (1998) 1.
16 B. Cantor, K. H. Baik and P. S. Grant: Prog. Mater. Sci., 42 (1997) 373.   DOI   ScienceOn
17 P. S. Grant: Prog. Mater. Sci., 39 (1995) 497.   DOI   ScienceOn