본 연구에서는 계산을 통해 나온 Sn-Ag-Cu 삼원계 공정점(Sn-3.7Ag-0.9Cu)을 바탕으로 그 근처의 응고경로가 다른 6가지 조성(Sn-4.6Ag-0.4Cu, Sn-4.9Ag-1.0Cu, Sn-3.9Ag-1.3Cu, Sn-2.2Ag-1.2Cu, Sn-2Ag-0.7Cu, Sn-2.7Ag-0.3Cu)에 대한 솔더합금의 미세조직을 관찰하였다. 응고경로는 $L\;\rightarrow\;L+Primary\;\rightarrow\;L+Primary+Secondary\;\rightarrow\;Ternary\;Eutectic+Primary+Secondary$로 되며 6가지 경우를 예상할 수 있다 솔더합금의 미세조직은 느린 냉각으로 인하여 빠른 냉각, 보통 냉각에 비해 상대적으로 커다란 $\beta-Sn$ dendrite를 보였고 $Ag_3Sn,\;Cu_6Sn_5$과는 다르게 $\beta-Sn$는 약 $30^{\circ}C$의 과냉(DSC분석)이 존재하게 되어 Sn-4.6Ag-0.4Cu의 경우에는 $Ag_3Sn$상이, Sn-2.2Ag-1.2Cu의 경우에는 $Cu_6Sn_5$가 과대성장을 하였다. 솔더의 기계적 특성을 살펴보고자 Cu 기판위에서 각 조성의 솔더볼을 솔더링한 후 다양한 냉각 속도를 적용하여 reflow 솔더링을 하고 솔더/기판 접합에 대한 전단 강도 시험을 실시했다. 냉각 속도가 빠를수록 $\beta-Sn$의 dendrite가 미세해져서 높은 전단 강도를 보였고 6가지 조성의 솔더볼중 공정조직 분율이 낮은 Sn-2Ag-0.7Cu 조성의 경우에서 낮은 전단 강도가 나타났다.
Sn-3.0Ag-0.5Cu 무연솔더에서 Ag 함량의 감소는 기계적 충격 신뢰성 향상에 도움이 되는 반면 솔더링성을 저하시키는 것으로 알려져 있다. 본 연구에서는 저 Ag함유 무연솔더의 솔더링성 향상을 위해 In을 첨가한 Sn-1.2Ag-0.7Cu-0.4In 4원계 조성과 여기에 미량의 Mn 및 Pd을 첨가한 무연솔더 조성에 대하여 솔더 젖음성을 평가하고, 보드 레벨 BGA 패키지의 열싸이클링 및 기계적 충격 신뢰성을 평가하였다. Sn-1.2Ag-0.7Cu 조성에 0.4 wt% In을 첨가한 합금의 젖음성은 Sn-3.0Ag-0.5Cu에 근접한 수준으로 향상되었으나, 패키지의 열싸이클링 신뢰성은 Sn-3.0Ag-0.5Cu에 미치지 못하는 것으로 나타났다. Sn-1.2Ag-0.7Cu-0.4In 조성에 0.03 wt% Pd의 첨가는 솔더 젖음성 및 패키지 신뢰성을 저하시킨 반면에 0.1 wt% Mn을 첨가한 합금은 특히 기계적 충격 신뢰성이 Sn-3.0Ag-0.5Cu는 물론 Sn-1.0Ag-0.5Cu보다도 우수한 수준으로 향상되었는데, 이는 Mn 첨가가 합금의 모듈러스를 감소시킨 데에 기인하는 것으로 생각된다.
본 연구에서는 고속 전단시험의 변형속도를 500 mm/s로 설정한 상태에서 Sn-Ag-Cu계(Sn-1.0wt.%Ag-0.5Cu 및 Sn-4.0Ag-0.5Cu)뿐만이 아니라 4종의 4원계 Sn-Ag-Cu-In 조성(Sn-1.0Ag-0.5Cu-1.0In, Sn-1.2Ag-0.5Cu-0.4In, Sn-1.2Ag-0.5Cu-0.6In, Sn-1.2Ag-0.7Cu-0.4In)을 포함하는 무연 솔더 접합부의 솔더링 직후 및 시효 시간에 따른 파면 생성결과, 접합강도 및 접합부 파괴에너지값의 변화를 측정, 비교해 보았다. 그 결과, 리플로우 솔더링 직후 및 $125^{\circ}C$에서의 500 시간 시효까지 주로 연성 파괴모드 및 준연성 파괴모드가 관찰되었으며, 준연성 파괴모드의 발생 빈도를 분석할 때 고속 전단조건에서 상용 무연 솔더 조성인 Sn-3.0Ag-0.5Cu 이상의 연성파괴 특성을 나타내는 것으로 파악되었다. 또한 4원계 무연 솔더 조인트는 평균적으로 Sn-Ag-Cu계 조성 수준의 파단에너지값을 나타내었는데, 약 100 시간의 시효 후 최고의 파단에너지값이 관찰되었으나 500 시간의 시효 후에는 파단에너지값의 확연한 감소가 관찰되어 500 시간의 시효시점부터 솔더 접합 계면부의 신뢰성 감소가 가속화되는 경향을 관찰할 수 있었다.
직경 0.3 mm의 Sn-37Pb 및 Sn-3.5Ag-0.7Cu 솔더볼을 솔더링 온도와 기판의 이송속도 (conveyer speed)를 변화시켜 가며 리플로 솔더링 하였다. 리플로 솔더링 온도범위는 Sn-37Pb의 경우 220~$240^{\circ}C$, Sn-3.5Ag-0.7Cu의 경우는 230~ $260^{\circ}C$로 하였다. 실험결과, 전단강도 측면에서 최적 솔더링 조건을 Sn-37Pb의 경우 솔더링 온도 및 컨베이어 속도가 각각 $230^{\circ}C$, 0.7~0.8 m/min이고, Sn-3.5Ag-0.7Cu의 경우 각각 $250^{\circ}C$, 0.6 m/min으로 나타났다. 또한 최고 전단강도 값은 Sn-37Pb의 경우는 555 gf 이고 Sn-3.5Ag-0.7Cu의 경우는 617gf이다. 접합계면의 분석결과 Cu6Sn5층의 두께는 Sn-37Pb의 경우는 1.13~1.45 $\mu\textrm{m}$이고 Sn-3.5Ag-0.7Cu의 경우는 2.5~4.3 $\mu\textrm{m}$이다.
저 Ag 함유 Sn-Ag-Cu계 무연솔더 조성, 즉, Sn-0.3Ag-0.7Cu 조성의 젖음 특성과 반응 특성을 Sn-1.0Ag-0.5Cu 및 Sn-3.0Ag-0.5Cu 합금 조성의 결과와 비교, 분석하였다. 또한 Sn-0.3Ag-0.7Cu 조성의 용융 특성을 시차주사열량계(differential scanning calorimeter, DSC)로 측정하고, 인장시험을 통한 응력-변형률 곡선을 관찰하였다. 아울러 Sn-0.3Ag-0.7Cu 조성의 젖음 특성을 향상시키기 위해 halide의 함유량이 많은 플럭스(flux)를 적용하거나 Sn-0.3Ag-0.7Cu 조성에 0.2wt.%의 In을 첨가하여 그 젖음 특성의 개선 정도를 분석해 보았다. 그 결과 halide 함유량이 높은 플럭스를 사용한 경우보다 미량의 In을 첨가한 경우가 $230{\sim}240^{\circ}C$의 저온 영역에서 wettability의 향상에 보다 효과적임을 관찰할 수 있었다.
지난 10여년 동안 Sn-3.0Ag-0.5(wt%)Cu 합금은 대표 무연솔더 조성으로 다양한 전자제품의 실장 및 접합에 적용되어 왔으며, 그 신뢰성 역시 충분히 검증된 바 있다. 그러나 최근 Ag 가격의 급격한 상승과 솔더 접합부의 내 충격 신뢰성을 보다 향상시키고자 하는 업계의 동향은 Ag의 함량이 낮은 무연솔더 조성의 적용 확대를 유도하고 있다. 이에 따라 본 연구자들은 저 Ag 함유 무연슬더로 Sn-1.2Ag-0.5Cu-0.4In 조성을 제안한 바 있는데, 이는 Sn-3.0Ag-0.5Cu 조성 이상의 solderability를 가지면서도 그 금속원료 가격이 약 20% 가량 저렴한 특징을 가진다. 또한 열 싸이클링 (cycling) 테스트를 통한 슬더 조인트의 신뢰성을 평가한 결과, Sn-3.0Ag-0.5Cu에 크게 뒤떨어지지 않는 양호한 특성이 관찰되었다. 따라서 본 연구에서는 열 싸이클링 테스트와 더불어 최근 그 중요성이 지속적으로 커지고 있는 내 충격 신뢰성 평가 시험을 실시하여 개발된 4원계 무연솔더 조성의 기계적 특성을 기존 무연솔더 조성과 비교, 분석해 보았다. 각 솔더 조성은 솔더 볼 형태로 제조되어 CSP(Chip Scale Package) 상에 범핑 (bumping)되었으며, CSP를 PCB(Printed Circuit Board) 상에 실장하는 공정에서도 Sn-3.0Ag-0.5Cu 및 Sn-1.2Ag-0.5Cu-0.4In의 두 종류의 솔더 페이스트가 사용되었다. 본 연구에서의 내 충격 신뢰성 시험에는 자체 제작한 rod drop 시험기를 사용하였는데, 고정된 CSP 실장 board의 후면 부위를 일정한 높이에서 추를 반복적으로 자유 낙하시켜 급격한 충격을 주는 방식으로 실험을 실시하였다. 이 때 추의 무게는 30g, 낙하 높이는 10cm 였으며, 추의 낙하 시 측정된 board 의 휨 변위량은 약 0.7mm로 측정되었다. 사용된 CSP와 PCB 는 모두 daisy chain 방식으로 연결되어 있기 때문에 저항측정기를 사용한 간단한 실시간 저항 측정 방법으로 시험 이력에 따른 파단부의 발생 시점과 대략의 위치를 손쉽게 확인할 수 있었다. 솔더 조인트의 파단 기준 저항값으로 $1000\Omega$을 설정하였으며. 각 조건 당 5 개 이상의 샘플에 대해 평가를 실시한 후 그 평균값을 조사하였다. 시험 결과 제안된 Sn-1.2Ag-0.5Cu-0.4In 조성은 대표적인 저 Ag 함유 조성인 Sn-1.0Ag-0.5Cu에 비해서는 떨어지는 내 충격 신뢰성을 나타내었지만, 우수한 연성에 기인하여 Sn-3.0Ag-0.5Cu 조성에 비해서는 약 2 배 이상 우수한 신뢰성이 관찰되었다. 또한 CSP의 실장 시 Sn-3.0Ag-0.5Cu보다 Sn-1.2Ag-0.5Cu-0.4In 조성 솔더 페이스트를 적용한 경우에서 보다 우수한 내 충격 신뢰성을 나타내어 기본적으로 개발된 Sn-1.2Ag-0.5Cu-0.4In 솔더 페이스트가 Sn-3.0Ag-0.5Cu 조성의 기존 솔더 페이스트 보다 내 충격 신뢰성이 우수함을 검증할 수 있었다. 각 조성의 솔더 조인트를 $150^{\circ}C$ 에서 500시간 aging한 후 실시한 내 충격 신뢰성 평가에서는 모든 조성에서 그 신뢰성이 급감하는 경항을 나타내었으나, Sn-1.2Ag-0.5Cu-0.4In가 Sn-l.0Ag-0.5Cu보다도 그 상대적인 신뢰성이 우수한 것으로 관찰되었다. 이와 같이 aging 후 실시하는 충격시험은 가장 실제적인 상황과 유사한 조건이므로 상기의 실험 결과는 매우 고무적이었으며, 이에 대한 보다 면밀한 분석이 요청되었다. 마지막으로 파면 및 미세조직 관찰을 통하여 각 조성에서의 충격 파단 특성을 비교, 분석해 보았다.
무연솔더 $Sn0.7wt{\%}Cu,\;Sn3.8wt{\%}Ag0.7wt{\%}Cu$ 솔더와 Pt층의 시효처리에 따른 계면반응에 대한 연구를 수행하였다. $250^{\circ}C$에서 30 초간 리플로한 $Sn3.8wt{\%}Ag0.7wt{\%}Cu/Pt$시편과, $260^{\circ}C$에서 30초간 리플로한 $Sn0.7wt{\%}Cu/Pt$ 시편을 이용하여 125, 150, $170^{\circ}C$에서 25-121 시간동안시효처리 하였다. 시효처리 온도와 시간에 따른 계면 금속간화합물의 두께 및 형상변화를 주사전자현미경 (scanning electron microscopy, SEM), energy dispersive x-ray spectroscopy (EDS) 및 x-ray diffractometry (XRD)를 이용하여 분석하였다. 분석 결과 계면에서 $PtSn_4,\;PtSn_2$가 발견되었고, 이런 금속간화합물 성장은 확산에 의해 지배됨을 발견하였다. 시효처리 온도와 시간에 따른 금속간화합물의 두께 변화를 이용하여 각 솔더에서의 계면 금속간화합물의 생성 활성화 에너지를 구해본 결과 $Sn3.8wt{\%}Ag0.7wt{\%}Cu/Pt$는 145.3 kJ/mol, $Sn0.7wt{\%}Cu/Pt$는 165.1 kJ/mol의 값을 가지고 있었다.
Sn-3.0Ag-0.5Cu solder is widely used as micro-joining materials of flip chip package(FCP) because of the fact that it causes less dissolution and has good thermal fatigue property. However, compared with ternary electroplating in the manufacturing process, binary electroplating is still used in industrial field because of easy to make plating solution and composition control. The objective of this research is to fabricate Sn-3.0Ag-0.5Cu solder bumping having accurate composition. The ternary Sn-3.0Ag-0.5Cu solder bumping could be made on a Cu pad by sequent binary electroplating of Sn-Cu and Sn-Ag. Composition of the solder was estimated by EDS and ICP-OES. The thickness of the bump was measured using SEM and the microstructure of intermetallic-compounds(IMCs) was observed by SEM and EDS. From the results, contents of Ag and CU found to be at $2.7{\pm}0.3wt%\;and\;0.4{\pm}0.1wt%$, respectively.
플립칩 전자패키지에서 칩과 기판(PCB)를 연결할 때, 통상적으로 칩쪽은 금속패드/UBM 처리를 기판 쪽은 표면처리를 한 후 솔더로 연결하는데, 이 때 사용되는 UBM이나 표면처리에 따라, 칩/솔더, PCB/솔더에 생성되는 금속간 화합물의 종류와 두께 및 솔더의 조성이 변하게 되어 궁극적으로 솔더 접합부의 기계적 신뢰성에 영향을 주게 된다. 본 연구에서는 Cu와 Au/Ni의 두가지 금속 패드가 무연솔더의 저주기 피로특성에 어떠한 영향을 미치는 지에 대해 고찰해 보았다. 저주기 피로 실험은 Cu나 Au/Ni이 표면처리 된 기판에 무연솔더 (Sn-3.5Ag, Sn-3.5Ag-1.5Cu, Sn-3.5Ag-XBi(X=2.5, 7.5), Sn-0.7Cu)를 리플로하여 총변위를 변화시키면서 상온에서 시행하였다. 기판의 표면처리에 관계없이 Sn-3.5Ag, Sn-3.5Ag-XCu(X-0.75, 1.5), Sn-0.7Cu 합금이 Sn-3.5Ag-7.5Bi 합금보다 피로저항성이 현격히 좋았으며, Au/Ni 표면처리한 솔더 접합부가 Cu 처리한 경우보다 피로저항성이 뛰어난 것으로 나타났다. 파괴 후 단면을 조사한 결과 계면에 형성된 금속간 화합물 내에 미세균열이 발견되었는데, Cu 표면처리를 사용한 경우 더 많은 미세균열이 생성된 것을 볼 수 있었다. Sn-3.5Ag, Sn-3.5Ag-Cu(X=0.75, 1.5), Sn-0.7Cu 합금의 경우 금속간 화합물 내에 생기는 미세 균열이 거시 균열로 성장하지 않고 파단은 항상 솔더 내부로 일어난 반면. Bi를 함유한 솔더의 경우, 기판의 표면처리에 상관없이 금속간 화합물/솔더 계면으로 균열이 생성 진전되어 다른 솔더합금에 비해 열악한 피로저항성을 나타내는 것으로 보인다. 이것은 Bi의 금속간화 합물/솔더 입계 편석이나 Bi 합금이 다른 합금에 비해 높은 경도값을 가지는 것에 인한 것으로 보여 진다.
본 연구에서는 태양광 접속함 모듈 적용을 위한 유연 솔더(Sn-Pb) 및 무연 솔더(Sn-3.0Ag-0.5Cu 및 Sn-1.0Ag-0.7Cu-1.6Bi-0.2In)의 특성을 비교 평가하였다. 접속함 내에는 전압 및 전류 검출용 모듈, 고내압용 다이오드가 실장된 정류모듈 등 다양한 모듈이 내장되어있다. 본 연구에서는 솔더링특성, 인쇄성, 솔더형상 검사, X-ray를 이용한 솔더 내 void 검사 및 접합강도를 측정하였고, 무연 솔더 합금의 공정최적화는 step 1과 step 2로 구분하여 검토를 실시하였다. Step 1은 유연 솔더와 무연 솔더 페이스트 인쇄 검사 시험을 1차와 2차로 나누어 실험을 진행하였고 printability는 void 함량 및 접합강도의 상관관계로 검토하였다. 전체적으로 유연 솔더의 특성은 무연 솔더에 비하여 상대적으로 우수하였다. Step 2는 리플로우 공정의 최고점 온도 변화에 따른 접합부 특성 변화를 관찰하였다. 리플로우 최고 온도가 증가할수록 접합부 내의 void 함량이 2~4% 정도 감소하였고, 접합강도는 약 0.5 kgf 범위내에서 큰 차이 없이 나타났다. 기판 표면처리종류에 있어서는 ENIG 표면처리가 OSP 및 Pb-free 솔더 표면처리보다 우수한 접합강도를 나타내었다. 1종류의 무연솔더와 OSP 표면처리로 접합된 태양광 접속함 모듈의 500 싸이클 열충격 신뢰성시험 전후에 전기적 특성변화는 0.3% 내의 범위에서 안정적으로 작동함을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.