• 제목/요약/키워드: Sn nanoparticle

검색결과 42건 처리시간 0.028초

화학적 습식 합성법에서 친환경 슈거 환원제 및 젤라틴 캡핑제에 의한 주석계 나노입자의 제조 (Tin-Based Nanoparticles Prepared by a Wet Chemical Synthesis using Green Reducing and Capping Agents)

  • 지상수;윤영은;유은선;박상현;박성영;이석희;박인선;이종현
    • 마이크로전자및패키징학회지
    • /
    • 제19권4호
    • /
    • pp.25-31
    • /
    • 2012
  • Tin(II) acetate 전구체를 사용한 습식 환원 합성법으로 나노입자를 제조하는 공정에서 친환경 환원제(슈거) 및 캡핑제(젤라틴)를 사용하여 합성 조건 및 합성 시간에 따른 주석 나노입자의 합성 특성을 분석하였다. 글루코스 환원제를 사용하여 $70-110^{\circ}C$의 온도에서 합성 시 불규칙한 사슬 형태로 군집체를 이루면서 배열된 환원 나노입자들이 관찰되었다. FFT 패턴 분석으로부터 이러한 나노입자들은 $SnO_2$ 상으로 분석되었다. 수크로오스 환원제로 사용하여 $110^{\circ}C$에서 합성을 실시한 경우에서는 3시간의 합성 시간에서 평균 약 10 nm급의 미세한 구형 나노입자들을 형성시킬 수 있었으나, 합성 시간을 9시간으로 증가시킨 경우에서는 불규칙하게 뭉친 나노입자들 외에도 사슬 형태의 나노입자 군집체들이 국부적으로 형성되는 거동이 관찰되었다. 그러나 $130^{\circ}C$ 합성 시에는 사슬 형태의 나노입자 군집체들만을 관찰할 수 있었다. 그 결과 구형의 나노입자는 순수 Sn 상으로, 사슬 형태 나노입자 군집체들은 $SnO_2$ 상으로 각각 분석되었다.

참굴(Crassostrea gigas) 수정란에 미치는 나노입자의 영향 (Effect of Nano Particles on Fertilized Egg of Crossostrea gigas)

  • 이병우;박찬일;최광수;김무찬
    • 해양환경안전학회지
    • /
    • 제14권1호
    • /
    • pp.9-14
    • /
    • 2008
  • 나노입자란 직경 100nm 이하의 크기를 가진 입자로 가전, 기능성 화장품, 반도체, 항균제 및 광촉매제 등에 널리 사용되어 있어 본 연구는 9종류의 나노입자가 참굴 수정란에 미치는 영향을 살펴보았다. 나인입자를 첨가하지 않은 대조구에서는 인공 수정한 참굴 수정란의 78%가 D형 유생으로 발생하였다. 은(Ag)이 2% 함유된 AGZ020, Nano silver 및 P-25의 나노입자와 주석산화물인 SnO의 나노입자는 24시간 경과 후 0.05ppm 농도에서 각 각 22%, 52%, 58% 및 76%가 D형 유생으로 발생하였으나, 20ppm 농도에서 8시간 이내 참굴 수정란을 모두 파괴하였다. In, Sb, Sn, Zn 및 Ag-$TiO_2$의 나노입자는 24시간 경과 후 0.05ppm 농도에서 모두 70%이상의 D형 유생으로 발생하여 상대적으로 낮은 농도에서 큰 영향을 받지 않는 것으로 나타났으나, 20ppm 농도에서 대조에 비해 D형 유생 발생율이 각 각 57%, 60%, 50%, 65% 및 64%로 저해되었다.

  • PDF

초미세 SAC305 나노입자를 사용한 저온 코팅법으로 제조된 SAC305 코팅 Cu의 솔더 젖음성 (Wettability of SAC305-coated Cu Fabricated by Low Temperature Process Using Ultrafine SAC305 Nanoparticles)

  • 신용무;최태종;조경진;장석필;이종현
    • 마이크로전자및패키징학회지
    • /
    • 제22권3호
    • /
    • pp.25-30
    • /
    • 2015
  • 직경 20 nm 미만의 금속 나노입자들이 나타내는 저온 용융특성을 이용한 새로운 패드 피니쉬 공정을 적용하여 Cu 표면을 SAC305로 코팅한 후 wettability의 변화를 평가하였다. SAC305 잉크를 사용한 $160^{\circ}C$의 저온 코팅공정 시 형성되는 SAC305 코팅층의 두께는 수 나노미터 수준으로 극히 얇았으며, 이 코팅층 밑으로 10~100 nm 두께 수준의 $Cu_6Sn_5$ 및 50~150 nm 두께 수준의 $Cu_3Sn$ 금속간화합물층 반응층이 생성되었음을 확인할 수 있었다. 즉, 생성된 금속간 화합물층의 두께는 압연동 시편에 비해 전해도금동 시편에서 훨씬 두꺼웠는데, 이는 전해도금동 시편에서 관찰되는 향상된 표면 거칠기 특성에 의해 단위면적 기준으로 보다 많은 수의 SAC305 나노입자들이 접촉된 상태에서 용융되어 반응하기 때문으로 분석되었다. 이후 SAC305 솔더볼을 사용한 젖음각 측정 실험에서 저온 SAC 코팅이 이루어진 Cu 표면은 SAC 코팅이 없는 Cu 표면에 비해 눈에 띄게 낮은 젖음각을 나타내어 당 코팅법으로 Cu 표면에 단지 수 나노미터 두께의 SAC305 층을 형성시킨 경우에서도 솔더의 wettability 개선을 유도할 수 있음을 확인할 수 있었다.

탄소나노 튜브위에 성장된 Pd 및 Pt 나노 입자의 제조 및 특성 (Synthesis and Property of Carbon Nanotube-Supported Pd and Pt Nanoparticles)

  • 김형균;이임렬
    • 한국재료학회지
    • /
    • 제19권4호
    • /
    • pp.192-197
    • /
    • 2009
  • Carbon nanotubes (CNT) were used as a catalyst support where catalytically active Pd and Pt metal particles decorated the outside of the external CNT walls. In this study, Pd and Pt nanoparticles supported on $HNO_3$-treated CNT were prepared by microwave-assisted heating of the polyol process using $PdCl_2$ and $H_2PtCl_6{\codt}6H_2O$ precursors, respectively, and were then characterized by SEM, TEM, and Raman. Raman spectroscopy showed that the acid treated CNT had a higher intensity ratio of $I_D/I_G$ compared to that of non-treated CNT, indicating the formation of defects or functional groups on CNT after chemical oxidation. Microwave irradiation for total two minutes resulted in the formation of Pd and Pt nanoparticles on the acid treated CNT. The sizes of Pd and Pt nanoparticles were found to be less than 10 nm and 3 nm, respectively. Furthermore, the $SnO_2$ films doped with CNT decorated by Pd and Pt nanoparticles were prepared, and then the $NO_2$ gas response of these sensor films was evaluated under $1{\sim}5\;ppm$ $NO_2$ concentration at $200^{\circ}C$. It was found that the sensing property of the $SnO_2$ film sensor on $NO_2$ gas was greatly improved by the addition of CNT-supported Pd and Pt nanoparticles.

Room Temperature Hydrogen Sensor

  • Cho, Hyoung Jin;Zhang, Peng;Seal, Sudipta
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.51.3-51.3
    • /
    • 2010
  • Due to the recent public awareness of global warming and sustainable economic growth, there has been a growing interest in alternative clean energy sources. Hydrogen is considered as a clean fuel for the next generation. One of the technical challenges related to the use of hydrogen is safe monitoring of the hydrogen leak during separation, purification and transportation. For detecting various gases, chemiresistor-type gas sensors have been widely studied and used due to their well-established detection scheme and low cost. However, it is known that many of them have the limited sensitivity and slow response time, when used at low temperature conditions. In our work, a sensor based on Schottky barriers at the electrode/sensing material interface showed promising results that can be utilized for developing fast and highly sensitive gas sensors. Our hydrogen sensor was designed and fabricated based on indium oxide (In2O3)-doped tin oxide (SnO2) semiconductor nanoparticles with platinum (Pt) nanoclusters in combination with interdigitated electrodes. The sensor showed the sensitivity as high as $10^7%$ (Rair/Rgas) and the detection limit as low as 30 ppm. The sensor characteristics could be obtained via optimized materials synthesis route and sensor electrode design. Not only the contribution of electrical resistance from the film itself but also the interfacial effect was identified as an important factor that contribute significantly to the overall sensor characteristics. This promises the applicability of the developed sensor for monitoring hydrogen leak at room temperature.

  • PDF

Anode Material Nanoparticles on Carbon Materials by Electrodeposition for Stability Anodes of Lithium Ion Battery

  • 최수정;우선확;이지희;박진환;황성우;황동목
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.419-420
    • /
    • 2012
  • Lithium-ion battery (LIB) usually used for valuable electronic devices are extended to applications. High stability negative electrode materials for LIB were investigated using electrodeposition of nanoparticles (NPs) on the nanostructured carbon. NPs with about 70 nm diameters were evenly prepared on the graphitic carbon materials using electrodeposition process at room temperature. It was observed that the NPs were homogeneously embedded into not only external surface but bottom part of the graphitic carbon network. The graphitic carbon material covered with NPs enables facile electron transport owing to the network structure and improves structural collapse during cycling. This facile room temperature process is expected to be applicable to other anode materials such as Sn and Al for the anode of LIB.

  • PDF

Nonvolatile Memory and Photovoltaic Devices Using Nanoparticles

  • Kim, Eun Kyu;Lee, Dong Uk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.79-79
    • /
    • 2013
  • Quantum-structures with nanoparticles have been attractive for various electronic and photonic devices [1,2]. In recent, nonvolatile memories such as nano-floating gate memory (NFGM) and resistance random access memory (ReRAM) have been studied using silicides, metals, and metal oxides nanoparticles [3,4]. In this study, we fabricated nonvolatile memories with silicides (WSi2, Ti2Si, V2Si) and metal-oxide (Cu2O, Fe2O3, ZnO, SnO2, In2O3 and etc.) nanoparticles embedded in polyimide matrix, and photovoltaic device also with SiC nanoparticles. The capacitance-voltageand current-voltage data showed a threshold voltage shift as a function of write/erase voltage, which implies the carrier charging and discharging into the metal-oxide nanoparticles. We have investigated also the electrical properties of ReRAM consisted with the nanoparticles embedded in ZnO, SiO2, polyimide layer on the monolayered graphene. We will discuss what the current bistability of the nanoparticle ReRAM with monolayered graphene, which occurred as a result of fully functional operation of the nonvolatile memory device. A photovoltaic device structure with nanoparticles was fabricated and its optical properties were also studied by photoluminescence and UV-Vis absorption measurements. We will discuss a feasibility of nanoparticles to application of nonvolatile memories and photovoltaic devices.

  • PDF

Poly(vinyl pyrrolidone) Conjugated Lipid System for the Hydrophobic Drug Delivery

  • Lee, Hye-Yun;Yu, Seol-A;Jeong, Kwan-Ho;Kim, Young-Jin
    • Macromolecular Research
    • /
    • 제15권6호
    • /
    • pp.547-552
    • /
    • 2007
  • Water soluble polymer, poly(vinyl pyrrolidone) was chosen to conjugate with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(succinyl) (N-succinyl DPPE) to make a new drug delivery system. PVP with an amine group (amino-PVP) was polymerized by free radical polymerization. The amine group of amino-PVP was conjugated with the carboxylic group of N-succinyl DPPE. The resultant conjugate could form nanoparticles in the aqueous solution; these nanoparticles were termed a lipid-polymer system. The critical aggregation concentration was measured with pyrene to give a value of $1{\times}10^{-3}g/L$. The particle size of the lipid-polymer system, as measured by DLS, AFM and TEM, was about 70 nm. Lipophilic component in the inner part of the lipid-polymer system could derive the physical interaction with hydrophobic drugs. Griseofulvin was used as a model drug in this study. The loading efficiency and release profile of the drug were measured by HPLC. The loading efficiency was about 54%. The release behavior was sustained for a prolonged time of 12 days. The proposed lipid-polymer system with biodegradable and biocompatible properties has promising potential as a passive-targeting drug delivery carrier because of its small particle size.

Solution-Processed Nontoxic and Abundant $Cu_2ZnSnS_4$ for Thin-Film Solar Cells

  • 문주호
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.65-65
    • /
    • 2012
  • Copper zinc tin sulfide ($Cu_2ZnSnS_4$, CZTS) is a very promising material as a low cost absorber alternative to other chalcopyrite-type semiconductors based on Ga or In because of the abundant and economical elements. In addition, CZTS has a band-gap energy of 1.4~1.5eV and large absorption coefficient over ${\sim}10^4cm^{-1}$, which is similar to those of $Cu(In,Ga)Se_2$(CIGS) regarded as one of the most successful absorber materials for high efficient solar cell. Most previous works on the fabrication of CZTS thin films were based on the vacuum deposition such as thermal evaporation and RF magnetron sputtering. Although the vacuum deposition has been widely adopted, it is quite expensive and complicated. In this regard, the solution processes such as sol-gel method, nanocrystal dispersion and hybrid slurry method have been developed for easy and cost-effective fabrication of CZTS film. Among these methods, the hybrid slurry method is favorable to make high crystalline and dense absorber layer. However, this method has the demerit using the toxic and explosive hydrazine solvent, which has severe limitation for common use. With these considerations, it is highly desirable to develop a robust, easily scalable and relatively safe solution-based process for the fabrication of a high quality CZTS absorber layer. Here, we demonstrate the fabrication of a high quality CZTS absorber layer with a thickness of 1.5~2.0 ${\mu}m$ and micrometer-scaled grains using two different non-vacuum approaches. The first solution-processing approach includes air-stable non-toxic solvent-based inks in which the commercially available precursor nanoparticles are dispersed in ethanol. Our readily achievable air-stable precursor ink, without the involvement of complex particle synthesis, high toxic solvents, or organic additives, facilitates a convenient method to fabricate a high quality CZTS absorber layer with uniform surface composition and across the film depth when annealed at $530^{\circ}C$. The conversion efficiency and fill factor for the non-toxic ink based solar cells are 5.14% and 52.8%, respectively. The other method is based on the nanocrystal dispersions that are a key ingredient in the deposition of thermally annealed absorber layers. We report a facile synthetic method to produce phase-pure CZTS nanocrystals capped with less toxic and more easily removable ligands. The resulting CZTS nanoparticle dispersion enables us to fabricate uniform, crack-free absorber layer onto Mo-coated soda-lime glass at $500^{\circ}C$, which exhibits a robust and reproducible photovoltaic response. Our simple and less-toxic approach for the fabrication of CZTS layer, reported here, will be the first step in realizing the low-cost solution-processed CZTS solar cell with high efficiency.

  • PDF

전자 패키징용 고신뢰성 나노입자 강화솔더 (High reliability nano-reinforced solder for electronic packaging)

  • 정도현;백범규;임송희;정재필
    • 마이크로전자및패키징학회지
    • /
    • 제25권2호
    • /
    • pp.1-8
    • /
    • 2018
  • In the soldering industry, a variety of lead-free solders have been developed as a part of restricting lead in electronic packaging. Sn-Ag-Cu (SAC) lead-free solder is regarded as one of the most superior candidates, owing to its low melting point and high solderability as well as the mechanical property. On the other hand, the mechanical property of SAC solder is directly influenced by intermetallic compounds (IMCs) in the solder joint. Although IMCs in SAC solder play an important role in bonding solder joints and impart strength to the surrounding solder matrix, a large amount of IMCs may cause poor strength, due to their brittle nature. In other words, the mechanical properties of SAC solder are of some concern because of the formation of large and brittle IMCs. As the IMCs grow, they may cause poor device performance, resulting in the failure of the electronic device. Therefore, new solder technologies which can control the IMC growth are necessary to address these issues satisfactorily. There are an advanced nanotechnology for microstructural refinement that lead to improve mechanical properties of solder alloys with nanoparticle additions, which are defined as nano-reinforced solders. These nano-reinforced solders increase the mechanical strength of the solder due to the dispersion hardening as well as solderability of the solder. This paper introduces the nano-reinforced solders, including its principles, types, and various properties.