• Title/Summary/Keyword: Smoothing filter

Search Result 217, Processing Time 0.029 seconds

FIR Fixed-Interval Smoothing Filter for Discrete Nonlinear System with Modeling Uncertainty and Its Application to DR/GPS Integrated Navigation System (모델링 불확실성을 갖는 이산구조 비선형 시스템을 위한 유한 임펄스 응답 고정구간 스무딩 필터 및 DR/GPS 결합항법 시스템에 적용)

  • Cho, Seong Yun;Kim, Kyong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.481-487
    • /
    • 2013
  • This paper presents an FIR (Finite Impulse Response) fixed-interval smoothing filter for fast and exact estimating state variables of a discrete nonlinear system with modeling uncertainty. Conventional IIR (Infinite Impulse Response) filter and smoothing filter can estimate state variables of a system with an exact model when the system is observable. When there is an uncertainty in the system model, however, conventional IIR filter and smoothing filter may cause large errors because the filters cannot estimate the state variables corresponding to the uncertain model exactly. To solve this problem, FIR filters that have fast estimation properties and have robustness to the modeling uncertainty have been developed. However, there is time-delay estimation phenomenon in the FIR filter. The FIR smoothing filter proposed in this paper makes up for the drawbacks of the IIR filter, IIR smoothing filter, and FIR filter. Therefore, the FIR smoothing filter has good estimation performance irrespective of modeling uncertainty. The proposed FIR smoothing filter is applied to the integrated navigation system composed of a magnetic compass based DR (Dead Reckoning) and a GPS (Global Positioning System) receiver. Even when the magnetic compass error that changes largely as the surrounding magnetic field is modeled as a random constant, it is shown that the FIR smoothing filter can estimate the varying magnetic compass error fast and exactly with simulation results.

A Finite Memory Structure Smoothing Filter and Its Equivalent Relationship with Existing Filters (유한기억구조 스무딩 필터와 기존 필터와의 등가 관계)

  • Kim, Min Hui;Kim, Pyung Soo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.2
    • /
    • pp.53-58
    • /
    • 2021
  • In this paper, an alternative finite memory structure(FMS) smoothing filter is developed for discrete-time state-space model with a control input. To obtain the FMS smoothing filter, unbiasedness will be required beforehand in addition to a performance criteria of minimum variance. The FMS smoothing filter is obtained by directly solving an optimization problem with the unbiasedness constraint using only finite measurements and inputs on the most recent window. The proposed FMS smoothing filter is shown to have intrinsic good properties such as deadbeat and time-invariance. In addition, the proposed FMS smoothing filter is shown to be equivalent to existing FMS filters according to the delay length between the measurement and the availability of its estimate. Finally, to verify intrinsic robustness of the proposed FMS smoothing filter, computer simulations are performed for a temporary model uncertainty. Simulation results show that the proposed FMS smoothing filter can be better than the standard FMS filter and Kalman filter.

Design of Nonlinear Fixed-Interval Smoothing Filter and Its Application to SDINS

  • Yu, Jae-Jong;Lee, Jang-Gyu;Hong, Hyun-Su;Han, Hyung-Seok;Park, Chan-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.177.4-177
    • /
    • 2001
  • In this paper, we propose a new type of nonlinear fixed interval smoothing filter which is modified from the existing nonlinear smoothing filter. A nonlinear smoothing filter is derived from two-filter formulas. For the backward filter, the propagation and update equation of error states are derived. Particularly the modified update equation of the backward filter use the estimated error terms from the forward filter. Smoothing algorithm is altered into the compatible form with the new type of the backward fitter. An advantage of the proposed algorithm is more efficient than the existing one because propagation in backward filter is very simple from the implementation point of view. We apply the proposed nonlinear smoothing ...

  • PDF

A Study on the Stand-Alone GPS Jump Error Smoothing Scheme (Stand-Alone GPS 점프오차 스무딩 기법 연구)

  • Lee, Tae-Gyoo;Kim, Kwangjin;Park, Heung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.1015-1023
    • /
    • 2001
  • error behaviour can be considered as a linear combination of low amplitude random noise and abrupt jumps. The reason of jump appearance can be explained by the semi-shading effects(buildings, trees), jamming, high dynamic of vehicle and so on. This study describes the stand-alone GPS error jump smoothing algorithm which is developed based on the scalar adaptive filter. The algorithm consists of the coarse jump smoothing and the fine jump smoothing. On the coarse smoothing step, GPS velocities or position differences are used as the measurement for the scalar adaptive filter. The purpose of adaptive filter is to smooth the jump errors. The coarse positions are detennined by the integration of smoothed velocities. On the fine smoothing step, the differences between GPS positions and the coarse positions are smoothed by another scalar adaptive filter. The reason of fine smoothing is based on the facts that smoothing accuracy depends on the variance ofusefuJ signa\. The coarse smoothing which deal with the difference of positions provides the rough error removing. So the coarse smoothed velocities can have much more low amplitude than the raw ones. The fine smoothing procedure provides high quality of filtering process. Simulation results show the efficiency of proposed scheme.

  • PDF

A Study on Eliminating the Error-Smoothing Filter from HARF Algorithm (HARF 알고리즘에서의 오차 완화 필터 제법에 관한 연구)

  • 신윤기;이종각
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.4
    • /
    • pp.1-9
    • /
    • 1983
  • In designing the adaptive recursive filter using the MRAS hyperstable output-error identifier, the most crucial point is the design of the error-smoothing filter In this paper, it is shown that by modifyins the HARF algorithm properly, we can obtain an algorithm which requires no error-smoothing filter and has relatively high convergence rate.

  • PDF

A Study on The Jump Error Smoothing Scheme by Fuzzy Logic

  • Lee, Tae-Gyoo;Kim, Kwang-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.56.3-56
    • /
    • 2001
  • This study describes the jump error smoothing scheme with fuzzy logic based on the scalar adaptive filter. The scalar adaptive filter is an useful algorithm for smoothing abrupt jump errors. However, the performances of scalar adaptive algorithm depend on the variance of real signal. So to design an effective algorithm, many informations of real and jump signal are required. In this paper, the fuzzy rules are designed by the analysis of scalar adaptive filter, and then the improved and simplified scheme is developed for smoothing the jump error. Simulations to INS/GPS integrated system show that the proposed method is effective.

  • PDF

INS/GPS Integrated Smoothing Algorithm for Synthetic Aperture Radar Motion Compensation Using an Extended Kalman Filter with a Position Damping Loop

  • Song, Jin Woo;Park, Chan Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.118-128
    • /
    • 2017
  • In this study, we propose a real time inertial navigation system/global positioning system (INS/GPS) integrated smoothing algorithm based on an extended Kalman filter (EKF) and a position damping loop (PDL) for synthetic aperture radar (SAR). Integrated navigation algorithms usually induce discontinuities due to error correction update by the Kalman filter, which are as detrimental to the performance of SAR as the relative position error. The proposed smoothing algorithm suppresses these discontinuities and also reduces the relative position error in real time. An EKF estimates the navigation errors and sensor biases, and all the errors except for the position error are corrected directly and instantly. A PDL activated during SAR operation period imposes damping effects on the position error estimates, where the estimated position error is corrected smoothly and gradually, which contributes to the real time smoothing and small relative position errors. The residual errors are re-estimated by the EKF to maintain the estimation performance and the stability of the overall loop. The performance improvements were confirmed by Monte Carlo simulations. The simulation results showed that the discontinuities were reduced by 99.8% and the relative position error by 48% compared with a conventional EKF without a smoothing loop, thereby satisfying the basic performance requirements for SAR operation. The proposed algorithm may be applicable to low cost SAR systems which use a conventional INS/GPS without changing their hardware configurations.

Smoothing Filter Design Applying a Parameter of a Homo-polar Generator (단극발전기의 내부 인자를 적용한 평활필터 설계)

  • Kim, In-Soo;Seong, Se-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.409-415
    • /
    • 2007
  • For satisfying a recommended value of the quality factor which is one of the important elements in a filter design, a new design method of smoothing filter using an internal parameter of a homopolar generator is proposed. The method increases the efficiency and minimizes the size of the smoothing filter by removing the damping resistor. By considering the resonant frequency as well as the quality factor, the new method can improve the stability of the system which has high boosting converters with negative resistance characteristics.

Edge Preserving Smoothing in Infrared Image using Relativity of Guided Filter

  • Kim, Il-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.27-33
    • /
    • 2018
  • In this paper, we propose an efficient edge preserving smoothing filter for Infrared image that can reduce noise while preserving edge information. Infrared images suffer from low signal-to-noise ratio, low edge detail information and low contrast. So, detail enhancement and noise reduction play crucial roles in infrared image processing. We first apply a guided image filter as a local analysis. After the filtering process, we optimization globally using relativity of guided image filter. Our method outperforms the previous methods in removing the noise while preserving edge information and detail enhancement.

Smoothing and Prediction of Measurement in INS/GPS Integrated Kalman Filter (INS/GPS 결합 칼만필터의 측정치 스무딩 및 예측)

  • Lee, Tae-Gyu;Kim, Gwang-Jin;Je, Chang-Hae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.944-952
    • /
    • 2001
  • Inertial navigation system(INS) errors increase with time due to inertial sensor errors, and therefore it is desired to combine INS with external aids such as GPS. However GPS informations have a randomly abrupt jump due to a sudden corruption of the received satellite signals and environment, and moreover GPS can\`t provide navigation solutions. In this paper, smoothing and prediction schemes are proposed for GPS`s jump or unavailable GPS. The smoothing algorithm which is designed as a scalar adaptive filter, smooths abrupt jump. The prediction algorithm which is proved by Schuler error model of INS, estimates INS error in appropriate time. The outputs of proposed algorithm apply stable measurements to GPS aided INS Kalman filter. Simulations show that the proposed algorithm can effectively remove measurement jump and predict INS error.

  • PDF