MRF (Markov random fields)로 전후 관계가 모델링된 변형된 형태의 ICM 방식을 소개한다. 특징 추출을 위해 부합블록인접의 새로운 MRF 모델을 제시한다. 이 모델은 현재 고려중인 화소를 기점으로 지엽구조인 복수방향의 기하학적 인접화소군들을 발생시켜 집합을 형성한다. 전처리 작업을 통해 산출한 특정 영역 색도분포의 확률적 데이터를 근거로 매 인접화소군 화소들 사이의 색도분포와 인접화소군들 사이의 관련성 여부를 단계별로 확률적으로 비교 판별함으로 해당화소의 영역귀속을 결정한다. 귀속 영역이 판별된 화소에는 특정 색도를 부여하고 타영역의 원소와 차별한다. 이러한 과정을 전 화소들에 확대 적용하면서 관측영상은 영역별로 순차적으로 분류되며 정보가 추출된다. 대상 영상은 탁본영상으로서 바탕영역과 정보영역을 차별적으로 분류, 색도부여를 통해 문자만의 특징을 선별한다. 이 방식은 종래의 ICM 방식의 단점이었던 과/부족 평활 현상을 최소화하는 동시에, 벡터적 판별력 부가에 의한 특정영역 잡음 제거와 얼룩현상 극소화에 효과가 있음이 실험을 통해 확인할 수 있었다. 또한 MICM 방식을 탁본영상의 문자인식에 적용하면 우수한 효과가 있으리라 기대한다.
스케일러블 HEVC에서 상위계층의 계층 간 예측에서 기본계층의 부호화 잔차 영상에 대한 업샘플링 된 결과를 참조하여 예측하게 된다. 본 논문에서는 고효율 영상 압축 기반 스케일러블 부호화 (Scalable Extension of High Efficiency Video Coding)에서 상위계층 잔차 데이터 예측에 대한 개선 기법을 제안한다. 제안하는 적응적 필터 선택 기법은 스무싱 필터와 샤프닝 필터를 사용함으로써 계층 간 예측 방법에서 효율을 향상시킨다. 기존의 업샘플링 필터와 두 개의 필터를 추가하여 율-왜곡 비용함수 기반의 경쟁기법을 통한 계층 간 예측 알고리즘을 SHVC 5.0에 구현함으로써 Y, U, V 컴포넌트에 대한 평균 1.5%, 2.1%, 1.7%의 BD-rate 향상을 보여준다.
본 논문에서는 비정상적인 배경 잡음 환경에서 음성향상을 위한 신호의 스펙트럼 변이 (Spectral Deviation)을 적용한 Soft Decision 기반의 잡음전력 수정 기법을 제안한다. 기존의 Soft Decision 기반의 잡음전력 추정에 있어서 잡음신호의 정상성(Stationarity)을 가정한 스무딩 파라미터를 사용하여 잡음전력을 추정하고 갱신하였지만, 잡음신호의 주파수적인 특성이 상대적으로 빠르게 변하는 비정상적인 환경에서는 강인하지 못한 단점을 가지게 된다. 본 논문에서는 신호의 스펙트럼 변이를 추정하여 정상적인 잡음 환경과 비정상적인 잡음 환경에 따라 적응적으로 잡음전력을 추정하고 갱신하여 잡음신호에 의해 오염된 음성신호를 향상시킨다. 제안된 알고리즘은 다양한 배경 잡음 환경에서 객관적인 음질측정 방법인 ITU-T P.862 perceptual evaluation of speech quality (PESQ)에 의해서 평가되었으며, 기존의 Soft Decision 기반의 음성 향상 기법과 비교하여 보다 향상된 성능을 보여주었다.
운전자의 도로 주행 데이터를 데이터베이스화한 정보는 다양하게 이용될 수 있다. 이러한 주행 정보를 이용한다면 운전자의 운전 성향을 분석하는데 도움이 될 것이다. 따라서 본 논문에서는 스마트폰을 이용하여 도로 주행 시의 센서 데이터들을 기록하고 주행 패턴을 인식하는 방법을 제안한다. 운전 성향을 분석하기에 앞서 패턴 별 주행 정보를 제공하기 위해 주행 패턴을 인식하는데 중점을 두었다. 좌회전, U턴, 우회전, 급감속, 급출발, 급가속, 과속방지턱에 해당하는 7개의 패턴을 인식하기 위한 과정으로 데이터 전처리를 통해 이벤트가 발생한 구간을 검출 후, DTW(Dynamic Time Warping) 알고리즘을 이용한 결정 방식을 적용하여 패턴을 인식한다. 제안된 방법은 운전자의 정보 제공을 위해 인식된 패턴과 함께 동시에 녹화된 비디오 스트림도 제공되며, 이는 안전운전시스템이나 운전습관분석시스템의 중요한 요소라 할 수 있다.
본 논문에서는 압축 동 영상의 블록화 및 링 현상을 동시에 제거 할 수 있는 저 계산량의 효율적인 필터방식을 제안한다. 인접 화소와의 상관 관계를 고려한 새로운 1차원 정규화 함수를 정의하여 기존의 정규화 복원 방식이 갖고 있던 계산량의 부하 문제를 해결하였다. 제안된 1차원 정규화 함수는 처리하고자 하는 화 소의 두 인접 화소를 이용한 2개의 부가 함수로 구성되어 있으며, 각각의 정규화 매개 변수는 복호화부에서 이용 가능한 매크로 블록의 타입 및 양자화 스텝 크기 등의 부가 정보를 이용하여 예측한다. 더불어, 본 논문에서는 정규화 매개 변수를 룩업 테이블 (look-up table)로 구성할 수 있도록 정규화 매개 변수의 영역을 제한하여 계산량을 더욱 줄일 수 있도록 구성하였다. 제안된 방식의 효율성을 실험 결과를 통해 확인할 수 있었다.
본 논문에서는 선명도가 향상된 영상의 오버슈트와 계단현상을 줄이기 위해 에지 보존 스무딩 필터인 bilateral filter를 이용한 적응적 언샤프 마스킹 기법을 제안한다. Unsharp masking(UM)을 포함한 기존의 선명도 개선 기법들은 영상의 고주파정보를 강하게 강조하지만, 종종 오버슈트, 잡음증폭, 계단현상 등 여러 문제점들을 야기한다. 제안한 선명도 개선 방법은 bilateral filter를 활용하여 에지를 잘 보존하고, 에지의 방향성에 따라 가중치를 더 세밀하게 조절한다. 따라서 선명도는 향상시키고 오버슈트, 계단현상 문제를 효과적으로 줄일 수 있었다. 기존의 적응적 언샤프 마스킹 기법과 제안하는 방법의 결과영상을 비교하여 실험을 수행한 결과, 제안하는 알고리즘이 적절하게 선명도를 개선함을 보여주었고 오버슈트와 계단현상도 많이 감소시킴을 알 수 있었다.
몬테칼로 선량계산 시 적절한 정확도를 얻기 위해서는 계산입자수를 늘려야 하고 그로 인해 계산 시간이 오래 걸리게되므로 일상적 치료계획의 선량계산 방법으로 이용되지 못했다. 본 연구에서는 몬테칼로 모의실험 시 계산입자 수를 줄여서 선량계산을 수행한 후 잡음 감소 필터를 적용하여 선량계산 결과를 개선하고자 하였다. 이를 위해 국소 최소자승 잡음 감소 필터를 제작하고 광자선 및 전자선 균질/비균질 팬텀 내 선량계산 결과에 대하여 적용하여 선택적 여과를 수행하였으며 그 유효성을 등선량 곡선 비교 및 감마시험을 통하여 검증하였다. 연구 결과 통계적 불확실도를 2$\%$ 이내로 유지하기 위해 필요한 계산입자수의 10$\%$ 이하의 계산입자 수를 이용하여 몬테칼로 선량계산 뒤 후처리한 결과가 기준계산 입자수를 이용하여 얻은 몬테칼로 선량계산 결과와 유사해질 수 있음을 확인하였다.
LiDAR 자료의 전처리 방법에 관한 다양한 연구 및 이와 관련된 다양한 알고리즘이 개발되고 있으며 크게 원시 LiDAR 자료를 직접 활용하는 방법과 원시 LiDAR 자료를 DSM 혹은 영상(image)와 같은 정규격자형식의 자료로 변환하여 사용하는 방법으로 접근하고 있다. 정규격자형식으로 변환하여 사용하는 대표적인 방법인 영상처리 기법을 이용하는 방법은 수치해석기 법의 적용이 용이하고 평활화를 통하여 노이즈의 일부가 제거되고 모델링에 유리한 장점이 있으나 자료의 변환과정에서 원시자료의 정보손실의 단점이 있다. 본 연구에서는 일반적으로 정규격자형식의 자료에 적용되는 경계검출 알고리즘 및 필터링기법 등의 영상처리기법을 벡터형식의 LiDAR 원시자료에 직접 적용하기 위한 알고리즘을 제시하고 지면정보 추출 정확도를 비교함으로써 궁극적으로는 원시자료의 정보손실을 최소화한 지면정보 추출기법을 제시하고자 하였다.
Because of the low power and low rate of a sensor network, outlier is frequently occurred in the time series data of sensor network. In this paper, we suggest periodic pattern analysis that is applied to the time series data of sensor network and predict outlier that exist in the time series data of sensor network. A periodic pattern is minimum period of time in which trend of values in data is appeared continuous and repeated. In this paper, a quantization and smoothing is applied to the time series data in order to analyze the periodic pattern and the fluctuation of each adjacent value in the smoothed data is measured to be modified to a simple data. Then, the periodic pattern is abstracted from the modified simple data, and the time series data is restructured according to the periods to produce periodic pattern data. In the experiment, the machine learning is applied to the periodic pattern data to predict outlier to see the results. The characteristics of analysis of the periodic pattern in this paper is not analyzing the periods according to the size of value of data but to analyze time periods according to the fluctuation of the value of data. Therefore analysis of periodic pattern is robust to outlier. Also it is possible to express values of time attribute as values in time period by restructuring the time series data into periodic pattern. Thus, it is possible to use time attribute even in the general machine learning algorithm in which the time series data is not possible to be learned.
전립선은 남자에게만 있는 장기이다. 전립선의 질병을 진단하기 위하여 일반적으로 TRUS 영상이 사용되는데, 희미한 전립선 경계나 잡음, 좁은 그레이 레벨 분포 때문에, 전립선의 경계를 검출하는 것은 상당히 어려운 작업 중의 하나이다. 본 논문에서는 SVM을 사용하여 TRUS 영상에서 자동적으로 전립선 분할을 하는 방법을 제안한다. 이 방법은 전처리, 가버 특징 추출, 훈련, 전립선 분할 과정으로 진행된다. 전처리 과정에서 잡음 제거는 스틱 필터와 top-hat 변환이 적용된다. 회전 불변 텍스처 추출을 위하여 가버 필터 뱅크가 사용된다. 훈련과정에서 SVM은 전립선과 비전립선의 각 특징을 얻기 위해 사용되며, 마지막으로 전립선 경계가 추출된다. 여러 실험 결과로 제안 방법은 충분히 유효하고, 의사의 수동 추출 방법과 비교했을 때 10%미만의 경계 차이를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.