• Title/Summary/Keyword: Smooth muscle cell

Search Result 396, Processing Time 0.03 seconds

Testosterone Relaxes Rabbit Seminal Vesicle by Calcium Channel Inhibition

  • Kim, Jong-Kok;Han, Woo-Ha;Lee, Moo-Yeol;Myung, Soon-Chul;Kim, Sae-Chul;Kim, Min-Ky
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.2
    • /
    • pp.73-77
    • /
    • 2008
  • Recent studies have documented that testosterone relaxes several smooth muscles by modulating $K^+$ channel activities. Smooth muscles of seminal vesicles playa fundamental role in ejaculation, which might involve testosterone. This study was aimed to assess the role of testosterone in seminal vesicular motility by studying its effects on contractile agents and on the ion channels of single vesicular myocytes in a rabbit model. The contractile responses of circular smooth muscle strips of rabbit seminal vesicles to norepinephrine ($10{\mu}M$), a high concentration of KCI (70 mM), and testosterone ($10{\mu}M$) were observed. Single vesicular myocytes of rabbit were isolated using proteolytic enzymes including collagenase and papain. Inside-out, attached, and whole-cell configurations were examined using the patch clamp technique. The applications of $10{\mu}M$ norepinephrine or 70 mM KCl induced tonic contractions, and $10{\mu}M$ testosterone (pharmacological concentration) evoked dose-dependent relaxations of these precontracted strips. Various $K^+$ channel blockers, such as tetraethylammonium (TEA; $10{\mu}M$), iberiotoxin ($0.1{\mu}M$), 4-aminopyridine (4-AP, $10{\mu}M$), or glibenclamide ($10{\mu}M$) rarely affected these relaxations. Single channel data (of inside-out and attached configurations) of BK channel activity were also hardly affected by testosterone ($10{\mu}M$). On the other hand, however, testosterone reduced L-type $Ca^{2+}$ currents significantly, and found to induce acute relaxation of seminal vesicular smooth muscle and this was mediated, at least in part, by $Ca^{2+}$ current inhibition in rabbit.

The Bioinformatics and Molecular Biology Approaches for Vascular Cell Signaling by Advanced Glycation Endproducts Receptor and Small Ubiquitin-Related Modifier

  • Kim, June Hyun
    • Interdisciplinary Bio Central
    • /
    • v.4 no.4
    • /
    • pp.12.1-12.6
    • /
    • 2012
  • The advanced glycation endproducts receptor (AGE-R) is a signal transduction receptor for multiligand such as S100b and AGEs. S100b has been demonstrated to activate various cells with important links to atherosclerosis initiation and progression including endothelial cells, and smooth muscle cells via AGE-R, triggering activation of multiple signaling cascades through its cytoplasmic domain. Many studies have suggested AGE-R might even participate in the cardiovascular complications involved in the pathogenesis of type I diabetes. Recently, Small Ubiquitin-Related Modifier 1 (SURM-1 also known as SUMO-1) has been recognized as a protein that plays an important role in cellular post-translational modifications in a variety of cellular processes, such as transport, transcriptional, apoptosis and stability. Computer Database search with SUMOplot Analysis program identified the five potential SURMylation sites in human AGE-R: K43, K44, K123, and K273 reside within the extracellular domain of AGE-R, and lastly K374 resides with the cytosolic domain of AGE-R. The presence of the consensus yKXE motif in the AGE-R strongly suggests that AGE-R may be regulated by SURMylation process. To test this, we decided to determine if AGE-R is SURMylated in living vascular cell system. S100b-stimulated murine aortic vascular smooth muscle cells were used for western blot analysis with relevant antibodies. Taken together, bioinformatics database search and molecular biological approaches suggested AGE-R is SURMylated in living cardiovascular cell system. Whilst SURMylation and AGE-R undoubtedly plays an important role in the cardiovascular biology, it remains unclear as to the exact nature of this contribution under both physiological and pathological conditions.

Generation of Reactive Oxygen Species Contributes to the Development of Carbon Black Cytotoxicity to Vascular Cells

  • Lee, Jong-Gwan;Noh, Won-Jun;Kim, Hwa;Lee, Moo-Yeol
    • Toxicological Research
    • /
    • v.27 no.3
    • /
    • pp.161-166
    • /
    • 2011
  • Carbon black, a particulate form of pure elemental carbon, is an industrial chemical with the high potential of occupational exposure. Although the relationship between exposure to particulate matters (PM) and cardiovascular diseases is well established, the cardiovascular risk of carbon black has not been characterized clearly. In this study, the cytotoxicity of carbon black to vascular smooth muscle and endothelial cells were examined to investigate the potential vascular toxicity of carbon black. Carbon black with distinct particle size, N330 (primary size, 28~36 nm) and N990 (250~350 nm) were treated to A-10, rat aortic smooth muscle cells and human umbilical vein endothelial cell line, ECV304, and cell viability was assessed by lactate dehydrogenase (LDH) leakage assay. Treatment of carbon black N990 resulted in the significant reduction of viability in A-10 cells at 100 ${\mu}g$/ml, the highest concentration tested, while N330 failed to cause cell death. Cytotoxicity to ECV304 cells was induced only by N330 at higher concentration, 200 ${\mu}g$/ml, suggesting that ECV304 cells were relatively resistant to carbon black. Treatment of 100 ${\mu}g$/ml N990 led to the elevation of reactive oxygen species (ROS) detected by dichlorodihydrofluorescein (DCF) in A-10 cells. Pretreatment of antioxidants, N-acetylcysteine (NAC) and sulforaphane restored decreased viability of N990-treated A-10 cells, and N-acetylcysteine, but not sulforaphane, attenuated N990-induced ROS generation in A-10 cells. Taken together, present study shows that carbon black is cytotoxic to vascular cells, and the generation of reactive oxygen contributes to the development of cytotoxicity. ROS scavenging antioxidant could be a potential strategy to attenuate the toxicity induced by carbon black exposure.

High Glucose Induces Connective Tissue Growth Factor Expression and Extracellular Matrix Accumulation in Rat Aorta Vascular Smooth Muscle Cells Via Extracellular Signal-Regulated Kinase 1/2

  • Ha, Yu Mi;Lee, Dong Hyup;Kim, Mina;Kang, Young Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.4
    • /
    • pp.307-314
    • /
    • 2013
  • Connective tissue growth factor (CTGF) is a potent pro-fibrotic factor, which is implicated in fibrosis through extracellular matrix (ECM) induction in diabetic cardiovascular complications. It is an important downstream mediator in the fibrotic action of transforming growth factor ${\beta}$ ($TGF{\beta}$) and is potentially induced by hyperglycemia in human vascular smooth muscle cells (VSMCs). Therefore, the goal of this study is to identify the signaling pathways of CTGF effects on ECM accumulation and cell proliferation in VSMCs under hyperglycemia. We found that high glucose stimulated the levels of CTGF mRNA and protein and followed by VSMC proliferation and ECM components accumulation such as collagen type 1, collagen type 3 and fibronectin. By depleting endogenous CTGF we showed that CTGF is indispensable for the cell proliferation and ECM components accumulation in high glucose-stimulated VSMCs. In addition, pretreatment with the MEK1/2 specific inhibitors, PD98059 or U0126 potently inhibited the CTGF production and ECM components accumulation in high glucose-stimulated VSMCs. Furthermore, knockdown with ERK1/2 MAPK siRNA resulted in significantly down regulated of CTGF production, ECM components accumulation and cell proliferation in high glucose-stimulated VSMCs. Finally, ERK1/2 signaling regulated Egr-1 protein expression and treatment with recombinant CTGF reversed the Egr-1 expression in high glucose-induced VSMCs. It is conceivable that ERK1/2 MAPK signaling pathway plays an important role in regulating CTGF expression and suggests that blockade of CTGF through ERK1/2 MAPK signaling may be beneficial for therapeutic target of diabetic cardiovascular complication such as atherosclerosis.

Downregulation of Angiotensin II-Induced 12-Lipoxygenase Expression and Cell Proliferation in Vascular Smooth Muscle Cells from Spontaneously Hypertensive Rats by CCL5

  • Kim, Jung-Hae;Kim, Hee-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.5
    • /
    • pp.385-392
    • /
    • 2009
  • Angiotensin II (Ang II) plays an important role in vascular hypertension. The role of the chemokine CCL5 on Ang II-induced activities in vascular smooth muscle cells (VSMCs) has not been studied. In this study, we elucidated the effect of CCL5 on Ang II-induced 12-lipoxygenase (LO) expression and cell proliferation in spontaneously hypertensive rats (SHR) VSMCs. CCL5 decreased Ang II-induced 12-LO mRNA expression and protein production, and it increased Ang II type 2 ($AT_2$) receptor expression in SHR VSMCs. The inhibitory effect of CCL5 on Ang II-induced 12-LO mRNA expression was mediated through the $AT_2$ receptor. Although treatment of CCL5 alone induced SHR VSMCs proliferation, CCL5 inhibited Ang II-induced VSMCs proliferation and PD123,319, an $AT_2$ receptor antagonist, blocked the inhibitory effect of CCL5 on Ang II-induced VSMCs proliferation. Phosphorylation of p38 was detected in VSMCs treated with Ang II or CCL5 alone. But, decrease of p38 phosphorylation was detected in VSMCs treated with Ang II and CCL5 simultaneously (Ang II/CCL5) and PD123,319 increased p38 phosphorylation in VSMCs treated with Ang II/CCL5. Therefore, these results suggest that the inhibitory effect of CCL5 on Ang II-induced VSMCs proliferation is mediated by the $AT_2$ receptor via p38 inactivation, and CCL5 may play a beneficial role in Ang II-induced vascular hypertension.

Porphyromonas Gingivalis Invasion of Human Aortic Smooth Muscle Cells

  • Lee, Seoung-Man;Lee, Hyeon-Woo;Lee, Jin-Yong
    • International Journal of Oral Biology
    • /
    • v.33 no.4
    • /
    • pp.163-177
    • /
    • 2008
  • Periodontal disease, a form of chronic inflammatory bacterial infectious disease, is known to be a risk factor for cardiovascular disease (CVD). Porphyromonas gingivalis has been implicated in periodontal disease and widely studied for its role in the pathogenesis of CVD. A previous study demonstrating that periodontopathic P. gingivalis is involved in CVD showed that invasion of endothelial cells by the bacterium is accompanied by an increase in cytokine production, which may result in vascular atherosclerotic changes. The present study was performed in order to further elucidate the role of P. gingivalis in the process of atherosclerosis and CVD. For this purpose, invasion of human aortic smooth muscle cells (HASMC) by P. gingivalis 381 and its isogenic mutants of KDP150 ($fimA^-$), CW120 ($ppk^-$) and KS7 ($relA^-$) was assessed using a metronidazole protection assay. Wild type P. gingivalis invaded HASMCs with an efficiency of 0.12%. In contrast, KDP150 failed to demonstrate any invasive ability. CW120 and KS7 showed relatively higher invasion efficiencies, but results for these variants were still negligible when compared to the wild type invasiveness. These results suggest that fimbriae are required for invasion and that energy metabolism in association with regulatory genes involved in stress and stringent response may also be important for this process. ELISA assays revealed that the invasive P. gingivalis 381 increased production of the proinflammatory cytokine interleukin (IL)-$1{\beta}$ and the chemotactic cytokines (chemokine) IL (interleukin)-8 and monocyte chemotactic (MCP) protein-1 during the 30-90 min incubation periods (P<0.05). Expression of RANTES (regulation upon activation, normal T cell expressed and secreted) and Toll-like receptor (TLR)-4, a pattern recognition receptor (PRR), was increased in HASMCs infected with P. gingivalis 381 by RT-PCR analysis. P. gingivalis infection did not alter interferon-$\gamma$-inducible protein-10 expression in HASMCs. HASMC nonspecific necrosis and apoptotic cell death were measured by lactate dehydrogenase (LDH) and caspase activity assays, respectively. LDH release from HASMCs and HAMC caspase activity were significantly higher after a 90 min incubation with P. gingivalis 381. Taken together, P. gingivalis invasion of HASMCs induces inflammatory cytokine production, apoptotic cell death, and expression of TLR-4, a PRR which may react with the bacterial molecules and induce the expression of the chemokines IL-8, MCP-1 and RANTES. Overall, these results suggest that invasive P. gingivalis may participate in the pathogenesis of atherosclerosis, leading to CVD.

Modulation of $Ca^{2+}-Activated$ Potassium Channels by cGMP-Dependent Signal Transduction Mechanism in Cerebral Arterial Smooth Muscle Cell of the Rabbit

  • Han, Jin;Kim, Na-Ri;Lee, Kwang-Bok;Kim, Eui-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.6
    • /
    • pp.445-453
    • /
    • 2000
  • The present investigation tested the hypothesis that the activation of protein kinase G (PKG) leads to a phosphorylation of $Ca^{2+}-activated$ potassium channel $(K_{Ca}\;channel)$ and is involved in the activation of $K_{Ca}$ channel activity in cerebral arterial smooth muscle cells of the rabbit. Single-channel currents were recorded in cell-attached and inside-out patch configurations of patch-clamp techniques. Both molsidomine derivative 3-morpholinosydnonimine-N-ethylcarbamide $(SIN-1,\;50\;{\mu}M)$ and 8-(4-Chlorophenylthio)-guanosine-3',5'-cyclic monophosphate $(8-pCPT-cGMP,\;100\;{\mu}M),$ a membrane-permeable analogue of cGMP, increased the $K_{Ca}$ channel activity in the cell-attached patch configuration, and the effect was removed upon washout of the drugs. In inside-out patches, single-channel current amplitude was not changed by SIN-1 and 8-pCPT-cGMP. Application of ATP $(100\;{\mu}M),$ cGMP $(100\;{\mu}M),$ ATP+cGMP $(100\;{\mu}M\;each),$ PKG $(5\;U/{\mu}l),$ ATP $(100\;{\mu}M)+PKG\;(5\;U/{\mu}l),$ or cGMP $(100\;{\mu}M)+PKG\;(5\;U/{\mu}l)$ did not increase the channel activity. ATP $(100\;{\mu}M)+cGMP\;(100\;{\mu}M)+PKG\;(5\;U/{\mu}l)$ added directly to the intracellular phase of inside-out patches increased the channel activity with no changes in the conductance. The heat-inactivated PKG had no effect on the channel activity, and the effect of PKG was inhibited by 8-(4-Chlorophenylthio)-guanosine-3',5'-cyclic monophosphate, Rp-isomer $(Rp-pCPT-cGMP,\;100\;{\mu}M),$ a potent inhibitor of PKG or protein phosphatase 2A (PP2A, 1 U/ml). In the presence of okadaic acid (OA, 5 nM), PP2A had no effect on the channel activity. The $K_{Ca}$ channel activity spontaneously decayed to the control level upon washout of ATP, cGMP and PKG, and this was prevented by OA (5 nM) in the medium. These results suggest that the PKG-mediated phosphorylations of $K_{Ca}$ channels, or some associated proteins in the membrane patch increase the activity of the $K_{Ca}$ channel, and the activation may be associated with the vasodilating action.

  • PDF

The Effects of Glucose, Insulin and Angiotensin II on Plasminogen Activator Inhibitor-1 Expression and Growth of Aortic Vascular Smooth Muscle Cell in Rats (포도당, 인슐린 및 Angiotensin II가 흰쥐 대동맥평활근세포의 Plasminogen Activator Inhibitor-1 발현 및 성장에 미치는 영향)

  • 최세영;이인규;한승세;김재현;박창권;이광숙;유영선;김기식;김윤년
    • Journal of Chest Surgery
    • /
    • v.32 no.4
    • /
    • pp.333-340
    • /
    • 1999
  • Background: Plasminogen activator inhibitor-1(PAI-1) is known as the primary physiological inhibitor of tissue-type plasminogen activator(t-PA) in the plasma, and is present within the atherosclerotic vessels. Increased plasma levels of PAI-1 are one of the major disturbances of the hemostatic system in patients with diabetes and/or hypertension, and may have multiple interrelations with the important risk factors in the development of atherosclerosis. This study was performed to determine whether altered gene expression of PAI-1 occurs within the arterial wall, and thereby potentially contributing to the increase of cardiovascular risks associated with diabetes and/or hypertension. Material and Method: The aortic vascular smooth muscle cells of the rat were exposed to 22 mM glucose, angiotensin II, and insulin increased PAI-1 mRNA expression with the use of Northern blotting were examined. Also examined were the effects of 22 mM glucose, angiotensin II and insulin on the growth of the rat's aortic smooth muscle cells by using MTT assay. Result: Twenty-two mM glucose treatment increased the PAI-1 mRNA expression in a time- and dose-dependent manner. Aniotensin II treatment synergistically increased the glucose-induced PAI-1 mRNA expression. In contrast, addition of insulin attenuated the increase of 22 mM glucose and angiotensin II induced PAI-1 mRNA expression. Furthermore, treatment of 22 mM glucose, angiotensin II and insulin resulted in a significant increase in cell numbers. This study demonstrated that 22 mM glucose and angiotensin II have a synergistic effect in stimulating the PAI-1 mRNA expression and in the cell growth of the rat's aortic smooth muscle cells. Conclusion: Elevation of glucose and angiotensin II may be important risk factors in impairing fibrinolysis and developing atherosclerosis in diabetic patients.

  • PDF

Effects of Socheongryong-tang and Kamichihyo-san on Mucin Secretion from Airway Goblet (소청용탕 및 가미치효산이 평흡기 배장세포로부터의 뮤신 분비에 미치는 영향)

  • Na Do gyun;Lee Choong Jae;Park Yang Chun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.3
    • /
    • pp.734-739
    • /
    • 2004
  • In the present study, the author intended to investigate whether two oriental medical prescriptions named socheongryong-tang(SCRT) and Kamichihyo-san(KCHS) significantly affect mucin release from cultured hamster tracheal surface epithelial(HTSE) cells. Confluent HTSE cells were metabolically radiolabeled with ³H-glucosamine for 24 hrs and chased for 30 min in the presence of SCRT or KCHS to assess the effect of each agent on ³H-mucin release. Possible cytotoxicities of each agent were assessed by measuring lactate dehydrogenase(LDH) release. Also, the effects of SCRT and KCHS on contractility of isolated tracheal smooth muscle were investigated. The results were as follows: (1) SCRT significantly inhibited mucin release from cultured HTSE cells, without cytotoxicity; (2) KCHS significantly increased mucin release without cytotoxicity; (3) SCRT and KCHS did not affect contractility of isolated tracheal smooth muscle. We suggest that the effects of SCRT and its components should be further investigated and it is of great value to find, from oriental medical prescriptions, novel agents which have the possible inhibitory effects on mucin release from the viewpoint of management of hypersecretion of airway mucus.

Vasodilatory Effects of Samhwangsasim-tang on Vascular Smooth Muscle (삼황사심탕의 혈관이완 효능과 기전)

  • Kim Jong Bong;Kwon Oh Kui;Son Chang Woo;Shin Heung Mook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.5
    • /
    • pp.1382-1386
    • /
    • 2004
  • This study was performed for the investigation of vasodilatory efficacy and its underlying mechanisms of Samhwangsasim-tang(SST), herbal remedy. SST relaxed vascular strips precontracted with phenylephrine or KCI(51 mM), but the magnitude of relaxation was greater in phenylephrine(PE) induced contraction. The relaxation effects of SST was endothelium-independent. L-NAME, iNOS inhibitor, and methyl en blue(MB), cGMP inhibitor, did not attenuate the relaxation responses of SST. In the absence of extracellular Ca2+, pre-incubation of the aortic rings with SST significantly reduced the contraction by PE, suggesting that the relaxant action of the SST includes inhibition of Ca/sup 2+/ influx and release of Ca/sup 2+/ from intracellular stores (SR). In addition, the cell death was induced by SST in human aortic smooth muscle cells but not that of human umbilical vein endothelial cells. We conclude that in rat thoracic aorta, SST may induce in part vasodilation through inhibition of Ca/sup 2+/ influx and release of Ca/sup 2+/ from intracellular stores.