• Title/Summary/Keyword: Smoke growth index (SGI)

Search Result 7, Processing Time 0.021 seconds

Assessment of Smoke Risk of Combustible Materials in Fire (화재 시 가연성 물질의 연기 위험성 평가)

  • Chung, Yeong-Jin;Jin, Eui
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.277-283
    • /
    • 2020
  • The smoke hazard assessment of building materials focusing on smoke performance index-II (SPI-II) and smoke growth index-II (SGI-II) was investigated. The test species used were Japanese cedar, spruce, lauan, and red pine. The smoke characteristics of wood specimen were investigated using a cone calorimeter (ISO 5660-1). SPI-II was measured after the combustion reaction increased by 1.31~2.15 times based on red pine. The fire risk by SPI-II increased in the order of spruce, lauan, Japanese ceda, and red pine. SGI-II increased by 1.18~2.55 times compared to that of Japnese ceda. The fire risk caused by SGI-II increased in the order of Japanese ceda, spruce, lauan, and red pine. COmean concentrations were ranged from 58 to 133 ppm, which was higher than permissible exposure limits of the occupational safety and health administration (OSHA), 50 ppm. Therefore, woods such as red pine containing various volatile organic substances, were considered to be highly smoke hazardous due to low SPI-II and high SGI-II.

Evaluation of Smoke Risk and Smoke Risk Rating for Combustible Substances from Fire (화재로부터 연소성 물질에 대한 연기위험성 및 연기위험성 등급 평가)

  • Chung, Yeong-Jin;Jin, Eui;You, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.197-204
    • /
    • 2021
  • This study investigated the smoke risk assessment of woods and plastics for construction materials, focusing on the smoke performance index-V (SPI-V), smoke growth index-V (SGI-V), and smoke risk index-VI (SRI-VI) according to a newly designed methodology. Spruce, Lauan, polymethylmethacrylate (PMMA), and polycarbonate (PC) were used for test pieces. Smoke characteristics of the materials were measured using a cone calorimeter (ISO 5660-1) equipment. The smoke performance index-V calculated after the combustion reaction was found to be 1.0 to 3.4 based on PMMA. Smoke risk by smoke performance index-V was increased in the order of PC, Spruce, Lauan and PMMA. Lauan and PMMA showed similar values. The smoke growth index-V was found to be 1.0 to 9.2 based on PMMA. Smoke risk by smoke growth index-V increased in the order of PMMA, PC, Spruce, and Lauan. COpeak production rates of all specimens were measured between 0.0021 to 0.0067 g/s. In conclusion, materials with a low smoke performance index-V and a high smoke growth index-V cause a high smoke risk from fire. Therefore, it is understood that the smoke risk from fire is high. It is collectively summarized by the smoke risk index-VI.

Smoke Hazard Assessment of Cypress Wood Coated with Boron/Silicon Sol Compounds (붕소/실리콘 졸 화합물로 도포된 편백 목재의 연기유해성 평가)

  • Jin, Eui;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • In this study, boron/silicon sol compounds were applied to wood for construction and durable materials, and fire risks were investigated in terms of smoke performance index (SPI), smoke growth index (SGI), and smoke intensity (SI). The compound was synthesized by reacting tetraethoxyorthosilicate with boric acid and boronic acid derivatives. Smoke characteristics were investigated using a cone calorimeter (ISO 5660-1) equipment for cypress wood. The fire intensity fixed the external heat flux at 50 kW/㎡. The smoke performance index measured after the combustion reaction increased between 13.4% and 126.7% compared with cypress wood. The fire risk due to the smoke performance index decreased in the order of cypress, phenylboronic acid/silicon sol (PBA/Si), (2-methylpropyl) boronic acid/silicon sol (IBBA/Si), boric acid/silicon sol (BA/Si). The smoke growth index decreased between 12.0% and 57.5% compared to the base specimen. The risk of fire caused by the smoke growth index decreased in the order of cypress, PBA/Si, IBBA/Si, BA/Si. The fire risk due to smoke intensity decreased between 3.2% and 57.8%, and in the order of cypress, PBA/Si, IBBA/Si, BA/Si. COpeak concentrations ranged between 85 and 93 ppm, and decreased between 37% and 43% compared to the base specimen. A comprehensive assessment of the fire risk on smoke hazards decreased in the order of cypress, PBA/Si, IBBA/Si, BA/Si.

New Smoke Risk Assessment on Wood Treated with Silicone Compound (실리콘 화합물로 처리된 목재의 새로운 연기위험성 평가)

  • Chung, Yeong-Jin;Jin, Eui
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.16-27
    • /
    • 2019
  • A burning test was conducted on the smoke and combustion gases generated from cypress wood treated with sodium silicate, 3-aminopropyltrimethoxysilane sol, 3-(2-aminoethylamino)propylmethyldimethoxysilane sol, and 3-(2-aminoethylamino) propyltrimethoxysilane sol. The silicone compound sol was applied to each of the cypress wood specimens three times with a brush. The smoke and combustion generation gas were analyzed using a cone calorimeter (ISO 5660-1) and the smoke was also evaluated by applying new smoke risk assessment method. The smoke performance index (SPI) of the cypress treated with silicone compound increased 1.66 to 8.42 times and the smoke growth index (SGI) was 11.8 to 88.2%, respectively. The smoke intensity (SI) is expected to be 1.0~50.5% lower than that of the base specimens, resulting in lower smoke and fire hazards. The third maximum carbon monoxide (COpeak) concentration of the specimens treated with silicone compounds was 22.5~33.3% lower than that of the base specimens. On the other hand, it produced potentially fatal toxicity that was 1.48~1.72 times higher than the US Occupational Safety and Health Administration (OSHA) acceptance standard (PEL). Cypress wood itself produced a high carbon monoxide concentration, but the silicon compound played a role in reducing this level.

Risk of Smoke Occurring in the Combustion of Plastics (플라스틱의 연소 시 발생하는 연기 위험성에 관한 연구)

  • You, Jisun;Chung, Yeong-jin
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.69-75
    • /
    • 2019
  • In this study, the combustibility of five types of plastic plates, fiber reinforced plastic (FRP), polystyrene (PS), polycarbonate (PC), polypropylene (PP), and polyvinyl chloride (PVC), were tested using a cone calorimeter (ISO 5660). The PVC plate showed a $44.65kW/m^2$ lower peak heat release rate (HRR) and a $30.97kW/m^2$ lower maximum average rate of heat emission than the other four types of plastics, whereas the PS plate showed a $773.44kW/m^2$ higher peak HRR and $399.14kW/m^2$ higher maximum average rate of heat emission. The PC plate and PS plate showed the highest HRR by a maximum of 3.88 times in $CO_{mean}$ yields, while the PS pate and PP plate showed the highest HRR by a maximum 4.88 times in $CO_{2mean}$ yields. In addition, the smoke performance index (SPI) of the PS plate decreased by 74.81%~95.99%; the smoke growth index (SGI) increased to 76%~300%; the smoke intensity (SI) also increased to 917.73% ~ 9607.57%, and the danger of smoke increased. The PS plate was found to have the highest risk of life damage due to smoke on the thermal and smoke sides.

Smoke Generation by Burning Test of Cypress Plates Treated with Boron Compounds (붕소 화합물로 처리된 편백목재의 연소시험에 의한 연기발생)

  • Chung, Yeong-Jin;Jin, Eui
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.670-676
    • /
    • 2018
  • Experiments on combustion gases generation of untreated cypress specimens or treated with boric acid, ammonium pentaborate, and boric acid/ammonium pentaborate additive were carried out. Test specimens were painted three times with 15 wt% boron compound aqueous solutions. After drying, the generation of combustion gas was analyzed using a cone calorimeter (ISO 5660-1). As a result, comparing to untreated specimen, the smoke performance index (SPI) of the specimens treated with the boron compound increased by 1.37 to 2.68 times and the smoke growth index (SGI) decreased by 29.4 to 52.9%. The smoke intensity (SI) of the specimens treated with boron compounds is expected to be 1.16 to 3.92 times lower than that of untreated specimens, resulting in lower smoke and fire hazards. Also, the maximum carbon monoxide ($CO_{peak}$) concentration of specimens treated with boron compounds was 12.7 to 30.9% lower than that of untreated specimens. However, it was measured to produce fatal toxicities from 1.52 to 1.92 times higher than that of permissible exposure limits (PEL) by Occupational Safety and Health Administration (OSHA). The boron compounds played a role in reducing carbon monoxide, but it did not meet the expectation of reduction effect because of the high concentration of carbon monoxide in cypress itself.

Risk Assessment of Smoke Generated During Combustion for Some Wood (일부 목재의 연소 시 발생되는 연기의 위험성 평가)

  • Chung, Yeong-Jin;Jin, Eui
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.373-380
    • /
    • 2022
  • In this study, Chung's equations 1, 2, and 3 were extended to standardize smoke safety rating evaluation in case of fire, and Chung's equations-V, smoke performance index-V, and smoke growth index-V were calculated. Five types of wood were selected and their smoke indices were measured using the cone calorimeter method according to ISO 5660-1. The smoke risk was graded by the smoke risk index-VI according to Chung's equation-VI. Smoke risk index-VI increased in the order of PMMA (1) ≈ maple (1.01) < ash (1.57) < needle fir (4.98) < paulownia (46.15) < western red cedar (106.26). It was predicted that maple and ash had the lowest smoke risk, and paulownia and western red cedar had the highest. The five samples' CO mean production rate (COPmean) was 0.0009~0.0024 g/s, indicating that these woods were incompletely burned than the polymethyl methacrylate (PMMA) reference material. Regarding the smoke properties of the chosen woods, the smoke performance index-V (SPI-V) increased as the bulk density increased, and the smoke risk index-VI (SRI-VI) decreased.