Browse > Article
http://dx.doi.org/10.14478/ace.2020.1024

Assessment of Smoke Risk of Combustible Materials in Fire  

Chung, Yeong-Jin (Department of Fire Protection Engineering, Kangwon National University)
Jin, Eui (Fire & Disaster Prevention Research Center, Kangwon National University)
Publication Information
Applied Chemistry for Engineering / v.31, no.3, 2020 , pp. 277-283 More about this Journal
Abstract
The smoke hazard assessment of building materials focusing on smoke performance index-II (SPI-II) and smoke growth index-II (SGI-II) was investigated. The test species used were Japanese cedar, spruce, lauan, and red pine. The smoke characteristics of wood specimen were investigated using a cone calorimeter (ISO 5660-1). SPI-II was measured after the combustion reaction increased by 1.31~2.15 times based on red pine. The fire risk by SPI-II increased in the order of spruce, lauan, Japanese ceda, and red pine. SGI-II increased by 1.18~2.55 times compared to that of Japnese ceda. The fire risk caused by SGI-II increased in the order of Japanese ceda, spruce, lauan, and red pine. COmean concentrations were ranged from 58 to 133 ppm, which was higher than permissible exposure limits of the occupational safety and health administration (OSHA), 50 ppm. Therefore, woods such as red pine containing various volatile organic substances, were considered to be highly smoke hazardous due to low SPI-II and high SGI-II.
Keywords
Wood species; Smoke performance index-II (SPI-II); Smoke growth index-II (SGI-II); $CO_{mean}$ concentrations;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 W. T. Simpso, Drying and control of moisture content and dimensional changes, Chap. 12, Wood Handbook-Wood as an Engineering Material, 1-21, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, USA (1987).
2 T. Y. Yoo, J. S. You, and Y. J. Chung, Combustion properties of construction lumber used in every life, Fire Sci. Eng., 31, 37-43 (2017).   DOI
3 Y. J. Chung, Combustion characteristics of the Quercus varialis and Zelkova serrata dried at room temperature, J. Korean Forest Soc., 99, 96-101 (2010).
4 J. G. Quintire, Principles of fire behavior, Chap. 5, Cengage Learning, Delmar, USA (1998).
5 Y. J. Chung, Comparison of combustion properties of native wood species used for fire pots in Korea, J. Ind. Eng. Chem., 16, 15-19 (2010).   DOI
6 B. Lee, H. Kim, S. Kim, H. Kim, B. Lee, Y. Deng, Q. Feng, and J. Luo, Evaluating the flammability of wood-based panels and gypsum particleboard using a cone calorimeter, Const. Build. Mater., 25, 7, 3044-3050 (2011).
7 F. M. Pearce, Y. P. Khanna, and D. Raucher, Thermal analysis in polymer flammability, Chap. 8. In : Thermal Characterization of Polymeric Materials, Academic press, New York, USA (1981).
8 Q. Wang, J. Li, and J. Winandy, Chemical mechanism of fire retardance of boric acid on wood, Wood Sci. Technol., 38, 375-389 (2004).   DOI
9 M. Risholm-Sundman, M. Lundgren, E. Vestine, and P. Herder, Emission of acetic acid and other volatile organic compounds from different species of solid wood, Holz Roh. Werkst., 56, 125-129 (1998).   DOI
10 B. Wang, Q. Tang, N. Hong, L. Song, L. Wang, Y. Shi, and Y. Hu, Effect of cellulose acetate butyrate microencapsulated ammonium polyphosphate on the flame retardancy, mechanical, electrical, and thermal properties of intumescent flame-retardant ethylene vinyl acetate copolymer/microencapsulated ammonium polyphosphate/polyamide-6 blends, ACS Appl. Mater. Interfaces, 3, 3754-3761 (2011).   DOI
11 C. Jiao, X. Chen, and J. Zhang, Synergistic effects of $Fe_2O_3$ with layered double hydroxides in EVA/LDH composites, J. Fire Sci., 27, 465-479 (2009).   DOI
12 OHSA, Carbon monoxide, OSHA fact sheet, United States National Institute for Occupational Safety and Health, September 14, USA (2009).
13 OHSA, Carbon Dioxide, Toxicological review of selected chemicals, final rule on air comments project, OHSA's Comments, January 19, USA (1989).
14 MSHA, Carbon Monoxide, MSHA's Occupational Illness and Injury Prevention Program Topic, U. S. Department of Labor, USA (2015).
15 M. J. Spearpoint and J. G. Quintiere, Predicting the piloted ignition of wood in the cone calorimeter using an integral model - effect of species, grain orientation and heat flux, Fire Safety J., 36, 391-415 (2001).   DOI
16 T. S. Kim, Y. S. Kim, C. K. Yoon, and Y. J. Chung, The Guide of Fire Investigation, 77-98, Kimoondang, Seoul, Korea (2009).
17 H. J. Park, H. Kim, and D. M. Ha, Predicting of fire characteristics of flame retardant treated Douglas fir using an integral model, J. KOSOS., 20, 98-104 (2005).
18 O. Grexa, Flame retardant treated wood products, The Proceedings of Wood & Fire Safety(part one), 101-110 (2000).
19 N. Boonmee and J. G. Quintiere, Glowing ignition of wood: The onset of surface combustion, Proceedings of the Combustion Institute, 30, 2303-2310 (2005).   DOI
20 R. H. White and M. A. Dietenberger, Wood Handbook: Wood as an Engineering Material, Ch.17: Fire safety, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, USA (1999).
21 G. Shen, S. Tao, S. Wei, Y. Zhang, R. Wang, B. Wang, W. Li, H. Shen, Y. Huang, Y. Chen, H. Chen, Y. Yang, W. Wang, X. Wang, W. Liu, and S. L. Simonich, Emissions of parent, nitro, and oxygenated polycyclic aromatic hydrocarbons from residential wood combustion in Rural China, Environ. Sci. Technol., 46, 8123-8130 (2012).   DOI
22 B. Tawiah, B. Yu, R. K. K. Yuen, Y. Hu, R. Wei, J. H. Xin, and B. Fei, Highly efficient flame retardant and smoke suppression mechanism of boron modified graphene oxide/poly(lactic acid) nanocomposites, Carbon, 150, 8-20 (2019).   DOI
23 J. Ding, J. Zhong, Y. Yang, B. Li, G. Shen, Y. Su, C. Wang, W. Li, H. Shen, B. Wang, R. Wang, Y. Huang, Y. Zhang, H. Cao, Y. Zhu, S. L. Simonich, and S. Tao, Occurrence and exposure to polycyclic aromatic hydrocarbons and their derivatives in a rural chinese home through biomass fuelled cooking, Environ. Pollution, 169, 160-166 (2012).   DOI
24 G. Shen, S. Tao, S. Wei, Y. Chen Y, Y. Zhang, H. Shen, Y. Huang, D. Zhu, C. Yuan, H. Wang, Y. Wang, L. Pei, Y. Liao, Y. Duan, B. Wang, R. Wang, Y. Lv, W. Li, X. Wang, and X. Zheng, Field measurement of emission factors of PM, EC, OC, parent, nitro-, and oxy-polycyclic aromatic hydrocarbons for residential briquette, coal cake, and wood in Rural Shanxi, China, Environ. Sci. Technol., 47, 2998-3005 (2013).   DOI
25 ISO 5660-1, Reaction-to-fire tests-heat release, smoke production and mass loss rate-part 1: heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement), Genever, Switzerland (2015).
26 L. Yan, Z. Xu, and N. Deng, Effects of polyethylene glycol borate on the flame retardancy and smoke suppression properties of transparent fire-retardant coatings applied on wood substrates, Prog. Org., 135, 123-134 (2019).
27 T. Fateh, T. Rogaume, J. Luche, F. Richard, and F. Jabou, Characterization of the thermal decomposition of two kinds of plywood with a cone calorimeter-FTIR apparatus, J. Anal. Appl. Pyrolysis, 107, 87-100 (2014).   DOI
28 Y. J. Chung and E. Jin, Smoke generation by burning test of cypress plates treated with boron compounds, Appl. Chem. Eng., 29, 670-676 (2018).   DOI