• Title/Summary/Keyword: Smartphone acceleration

Search Result 76, Processing Time 0.023 seconds

Implementation of Smartphone Games Combining Motion Recognitions and Mutual Communications of Terminals (단말기 동작인식과 상호 통신을 결합한 스마트폰 게임의 구현)

  • Lee, Soong-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.2064-2071
    • /
    • 2012
  • The generalization trend of smart phones have brought many smartphone games into daily lives. These games are mainly dependent on the interactions on the display of the phone using finger touches. On the other hand, functions for detecting the positions and actions of the phones such as gyro-sensors have been rapidly developed over the former orientation sensors and acceleration sensors. Though it has become technologically possible to detect the users' motion via the smartphone devices and to use the phone device directly as the game device, it is hard to find the actualized cases. This paper proposes a new paradigm including basic frameworks and algorithm for the games combining the motion recognitions and mutual communications on the smartphones and finally presents the details of its implementation and results.

Experimental validation of smartphones for measuring human-induced loads

  • Chen, Jun;Tan, Huan;Pan, Ziye
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.625-642
    • /
    • 2016
  • The rapid technology developments in smartphones have created a significant opportunity for their use in structural live load measurements. This paper presents extensive experiments conducted in two stages to investigate this opportunity. Shaking table tests were carried out in the first stage using selected popular smartphones to measure the sinusoidal waves of various frequencies, the sinusoidal sweeping, and earthquake waves. Comparison between smartphone measurements and real inputs showed that the smartphones used in this study gave reliable measurements for harmonic waves in both time and frequency domains. For complex waves, smartphone measurements should be used with caution. In the second stage, three-dimensional motion capture technology was employed to explore the capacity of smartphones for measuring the movement of individuals in walking, bouncing and jumping activities. In these tests, reflective markers were attached to the test subject. The markers' trajectories were recorded by the motion capture system and were taken as references. The smartphone measurements agreed well with the references when the phone was properly fixed. Encouraged by these experimental validation results, smartphones were attached to moving participants of this study. The phones measured the acceleration near the center-of-mass of his or her body. The human-induced loads were then reconstructed by the acceleration measurements in conjunction with a biomechanical model. Satisfactory agreement between the reconstructed forces and that measured by a force plate was observed in several instances, clearly demonstrating the capability of smartphones to accurately assist in obtaining human-induced load measurements.

Implementation of Rule-based Smartphone Motion Detection Systems

  • Lee, Eon-Ju;Ryou, Seung-Hui;Lee, So-Yun;Jeon, Sung-Yoon;Park, Eun-Hwa;Hwang, Jung-Ha;Choi, Doo-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.7
    • /
    • pp.45-55
    • /
    • 2021
  • Information obtained through various sensors embedded in a smartphone can be used to identify and analyze user's movements and situations. In this paper, we propose two rule-based motion detection systems that can detect three alphabet motions, 'I', 'S', and 'Z' by analyzing data obtained by the acceleration and gyroscope sensors in a smartphone. First of all, the characteristics of acceleration and angular velocity for each motion are analyzed. Based on the analysis, two rule-based systems are proposed and implemented as an android application and it is used to verify the detection performance for each motion. Two rule-based systems show high recognition rate over 90% for each motion and the rule-based system using ensemble shows better performance than another one.

A Study on step number detection using smartphone sensors for position tracking (위치 추적을 위한 스마트폰 센서를 이용한 걸음 수 검출에 관한 연구)

  • Lee, Kwonhee;Kim, Kwanghyun;Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.119-125
    • /
    • 2018
  • Various techniques for indoor positioning using a smart phone have been studied. Among them, the positioning technology using the acceleration sensor and the gyro sensor built in the smartphone is widely used in conjunction with the WiFi fingerprint technology. The location tracking technology using sensors has been used for a long time, but the performance environment of the smartphone is poor and the user is moving with the smartphone in a certain posture. Therefore, in order to improve the accuracy of location tracking in a smartphone environment, it is necessary to study and develop appropriate algorithms in a mobile environment. In this paper, we analyze the performances of frequency analysis method, maximum sum of minimum acceleration method and adaptive threshold method, which are the user's moving step count detection algorithms, and determine the most accurate method.

Study of Users' Location Estimation based on Smartphone Sensors for Updating Indoor Evacuation Routes (실내 대피 경로의 최신화를 위한 스마트폰 센서 기반의 사용자 위치 추정에 관한 연구)

  • Quan, Yu;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.20 no.2
    • /
    • pp.37-44
    • /
    • 2018
  • The Location Based Service is growing rapidly nowadays due to the universalization of the use for smartphone, and therefore the location determination technology has been placed in a very important position. This study suggests an algorithm that can provide the estimate of users' location by using smartphone sensors. And in doing so we will propose a methodology for the creation and update of indoor map through the more accurate position estimation using smartphone sensors such as acceleration sensor, gyroscope sensor, geomagnetic sensor and rotation sensor.

Evaluation of Low-cost MEMS Acceleration Sensors to Detect Earthquakes

  • Lee, Jangsoo;Kwon, Young-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.5
    • /
    • pp.73-79
    • /
    • 2020
  • As the number of earthquakes gradually increases on the Korean Peninsula, much research has been actively conducted to detect earthquakes quickly and accurately. Because traditional seismic stations are expensive to install and operate, recent research is currently being conducted to detect earthquakes using low-cost MEMS sensors. In this article, we evaluate how a low-cost MEMS acceleration sensor installed in a smartphone can be used to detect earthquakes. To this end, we installed about 280 smartphones at various locations in Korea to collect acceleration data and then assessed the installed sensors' noise floor through PSD calculation. The noise floor computed from PSD determines the magnitude of the earthquake that the installed MEMS acceleration sensors can detect. For the last few months of real operation, we collected acceleration data from 200 smartphones among 280 installed smartphones and then computed their PSDs. Based on our experiments, the MEMS acceleration sensor installed in the smartphone is capable of observing and detecting earthquakes with a magnitude 3.5 or more occurring within 10km from an epic center. During the last several months of operation, the smartphone acceleration sensor recorded an earthquake of magnitude 3.5 in Miryang on December 30, 2019, and it was confirmed as an earthquake using STA/LTA which is a simple earthquake detection algorithm. The earthquake detection system using MEMS acceleration sensors is expected to be able to detect increasing earthquakes more quickly and accurately.

Design and Implementation of a Smartphone-based User-Convenance Home Network Control System using Gesture (제스처를 이용한 스마트폰 기반 사용자 편의 홈 네트워크 제어 시스템의 설계 및 구현)

  • Jeon, Byoungchan;Cha, Siho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.2
    • /
    • pp.113-120
    • /
    • 2015
  • Under the penetration of smartphones equipped with a variety of features grows globally, the efficient using of a variety of functions of smartphones has been increased. In accordance with this trend, a lot of researches on the remote control method using the smart phone for consumer products in home networks. Input methods of the current smpartphoes are typically button-based inputs through touching. The button input methods are inconvenient for people who are not familiar touch. Therefore, the researches on the different input schemes to replace the touch methods are required. In this paper, we propose a gesture based input method to replace the touch-sensitive input that of the existing smartphone applications, and a way to apply it to home networks. The proposed method uses three-axis acceleration sensor which is built into smatphones, and it also defines six kinds of gestures patterns that may be applied to home network systems by measuring the recognition rates.

Dynamic characteristics monitoring of a 421-m-tall skyscraper during Typhoon Muifa using smartphone

  • Kang Zhou;Sha Bao;Lun-Hai Zhi;Feng Hu;Kang Xu;Zhen-Ru Shu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.451-460
    • /
    • 2023
  • Recently, the use of smartphones for structural health monitoring in civil engineering has drawn increasing attention due to their rapid development and popularization. In this study, the structural responses and dynamic characteristics of a 421-m-tall skyscraper during the landfall of Typhoon Muifa are monitored using an iPhone 13. The measured building acceleration responses are first corrected by the resampling technique since the sampling rate of smartphone-based measurement is unstable. Then, based on the corrected building acceleration, the wind-induced responses (i.e., along-wind and across-wind responses) are investigated and the serviceability performance of the skyscraper is assessed. Next, the amplitude-dependency and time-varying structural dynamic characteristics of the monitored supertall building during Typhoon Muifa are investigated by employing the random decrement technique and Bayesian spectral density approach. Moreover, the estimated results during Muifa are further compared with those of previous studies on the monitored building to discuss its long-term time-varying structural dynamic characteristics. The paper aims to demonstrate the applicability and effectiveness of smartphones for structural health monitoring of high-rise buildings.

Hierarchical Deep Belief Network for Activity Recognition Using Smartphone Sensor (스마트폰 센서를 이용하여 행동을 인식하기 위한 계층적인 심층 신뢰 신경망)

  • Lee, Hyunjin
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1421-1429
    • /
    • 2017
  • Human activity recognition has been studied using various sensors and algorithms. Human activity recognition can be divided into sensor based and vision based on the method. In this paper, we proposed an activity recognition system using acceleration sensor and gyroscope sensor in smartphone among sensor based methods. We used Deep Belief Network (DBN), which is one of the most popular deep learning methods, to improve an accuracy of human activity recognition. DBN uses the entire input set as a common input. However, because of the characteristics of different time window depending on the type of human activity, the RBMs, which is a component of DBN, are configured hierarchically by combining them from different time windows. As a result of applying to real data, The proposed human activity recognition system showed stable precision.

Fall Detection System using Smartphone for Mobile Healthcare (모바일 헬스케어 지원을 위한 스마트폰을 이용한 낙상 감지 시스템)

  • Jeong, Pil-Seong;Cho, Yang-Hyun
    • Journal of Information Technology Services
    • /
    • v.12 no.4
    • /
    • pp.435-447
    • /
    • 2013
  • If we use a smartphone to analyze and detect falling, it is a huge advantage that the person with a sensor attached to one's body is free from awareness of difference and limitation of space, unlike attaching sensors on certain fixed areas. In this paper, we suggested effective posture analysis of smartphone users, and fall detecting system. Suggested algorithm enables to detect falling accurately by using the fact that instantaneous change of acceleration sensor is different according to user's posture. Since mobile applications working on smart phones are low in compatibility according to mobile platforms, it is a constraint that new development is needed which is suitable for sensor equipment's characteristics. In this paper, we suggested posture analysis algorithm using smartphones to solve the problems related to user's inconvenience and limitation of development according to sensor equipment's characteristics. Also, we developed fall detection system with the suggested algorithm, using hybrid mobile application which is not limited to platform.