• Title/Summary/Keyword: Smart-device

Search Result 2,248, Processing Time 0.036 seconds

A Study on Design Method of Smart Device for Industrial Disaster Detection and Index Derivation for Performance Evaluation (산업재해 감지 스마트 디바이스 설계 방안 및 성능평가를 위한 지표 도출에 관한 연구)

  • Ran Hee Lee;Ki Tae Bae;Joon Hoi Choi
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.120-128
    • /
    • 2023
  • There are various ICT technologies continuously being developed to reduce damage by industrial accidents. And research is being conducted to minimize damage in case of industrial accidents by utilizing sensors, IoT, big data, machine learning and artificial intelligence. In this paper, we propose a design method for a smart device capable of multilateral communication between devices and smart repeater in the communication shaded Areas such as closed areas of industrial sites, mountains, oceans, and coal mines. The proposed device collects worker's information such as worker location and movement speed, and environmental information such as terrain, wind direction, temperature, and humidity, and secures a safe distance between workers to warn in case of a dangerous situation and is designed to be attached to a helmet. For this, we proposed functional requirements for smart devices and design methods for implementing each requirement using sensors and modules in smart device. And we derived evaluation items for performance evaluation of the smart device and proposed an evaluation environment for performance evaluation in mountainous area.

Development of Bib Pants Design and Pattern for Cycling Smart Wear (사이클링 스마트웨어 제작을 위한 빕 팬츠 디자인 및 패턴 개발)

  • Yunyoung, Kim;Byeongha, Ryu;Woojae, Lee;Kikwang, Lee;Rira, Kim
    • Journal of Fashion Business
    • /
    • v.26 no.5
    • /
    • pp.91-104
    • /
    • 2022
  • In this study, a cycling smart wear for measuring cycling posture and motion was developed using a three-dimensional motion analysis camera and an IMU inertial sensor. Results were compared according to parts to derive the optimal smart device attachment location, enabling correct posture measurement and cycle motion analysis to design a pattern. Conclusions were as follows: 1) 'S-T8' > 'S-T10' > 'S-L4' was the most significant area for each lumbar spine using a 3D motion analysis system with representative posture change (90°, 60°, 30°) to derive incisions and size specifications; 2) the part with the smallest relative angle change among significant section reference points during pattern design was applied as a reference point for attaching a cycling smart device to secure detachable safety of the device. Optimal locations for attaching the cycling device were the "S-L4" hip bone (Sacrum) and lumbar spine No. 4 (Lumbar 4th); 3) the most suitable sensor attachment location for monitoring knee induction-abduction was the anatomical location of the rectus femoris; 4) a cycling smart wear pattern was developed without incision in the part where the sensor and electrode passed. The wearing was confirmed with 3D CLO. This study aims to provide basic research on exercise analysis smart wear, to expand the smart cycling area that could only be realized with smart devices and smart watches attached to current cycles, and to provide an opportunity to commercialize it as cycling smart wear.

Smart Tourism Information System and IoT Data Collection Devices for Location-based Tourism and Tourist Safety Services

  • Ko, Tae-Seung;Kim, Byeong-Joo;Jwa, Jeong-Woo
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.310-316
    • /
    • 2022
  • The smart tourism service provides services such as travel planning and tour guides to tourists using key technologies of the 4th industrial revolution, such as the Internet of Things, communication infrastructure, big data, artificial intelligence, AR/VR, and drones. We are developing smart tourism services such as recommended travel products, my travel itinerary, tourism information, and chatbots for tourists through the smart tourism app. In this paper, we develop a smart tourism service system that provides real-time location-based tourism information and weather information to tourists. The smart tourism service system consists of a smart tourism app, a smart tourism information system, and an IoT data collection device. The smart tourism information system receives weather information from the IoT data collection device installed in the tourist destination. The location-based smart tourism service is provided as a smart tourism app in the smart tourism information system according to the Beacon's UUID in the IoT data collection device. The smart tourism information system stores the Beacon's UUIDs received from tourists and provides a safe hiking service for tourists.

Smart Multiple-Tap System Based on WiFi for reduction of Standby-Power

  • Jeon, Jeong-woo;Yi, Mira
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.6
    • /
    • pp.123-129
    • /
    • 2017
  • In this paper, we proposed a smart multiple-tap system which a remote user with smartphone can control multiple-taps in order to reduce standby-power consumption more conveniently when plugged-in electric appliances are turned-off. Recently, several researches of smart multiple-tap using IoT technology has reported. However, in these researches, an additional device like as a server computer is necessary, or multiple-taps could be only remotely controlled by smartphone and not directly controlled by on/off switch. The proposed smart multiple-tap system does not need any additional device only if it has a WiFi router, and it can be used for user as well as remote control using smartphone application and physically direct control using contact switches like existing multiple-taps. Our approach is to develop a smart multiple-tap device capable of WiFi communication can each serve as a server or a client, and can be operated by the hybrid switch combining the on/off contact switch and the relay switch. We implemented the prototype of the proposed system composed of the smart multiple-tap device and the smartphone application, and the test of the prototype validates the proposed system.

A Design of Device Identification and Communication Method for Secure Device Monitoring based Smart Phone (스마트폰 기반에서 안전한 디바이스 모니터링을 위한 디바이스 식별 및 통신 기법 설계)

  • Jin, Byungwook;Ahn, Heuihak;Jun, Moonseog
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.1
    • /
    • pp.69-78
    • /
    • 2017
  • As the smartphone-based devices are diffused and developed rapidly, they provide the convenience to the users. The abovementioned sentence technologies are being used not only in the existing sensor and wireless network technology but also in the application services of the diverse fields application services such as smart appliance, smart car, smart health care, etc. and the new fusion paradigm from the industry is presented by undertaking the researches in diverse area by the enterprises and research institutions. However, the smart environment exposes its weaknesses in the mobile terminal area, existing wireless network and IT security area. In addition, due to new and variant ways of attack, not only the critical information are disclosed However also the financial damages occur. This paper proposed the protocol to perform the smartphone-based safe device monitoring and safe communication. The proposed protocol designed the management procedure of registration, identification, communication protocol and device update management protocol and the safety against the attack techniques such as the an-in-the-middle-attack, impersonation attack, credential threat, information leaks and privacy invasion was analyzed. It was observed that the proposed protocol showed the performance improved by approximately 52% in the communication process than the existing system.

A Design of Secure Communication Framework for Device Management and User Authentication in Wireless Network Environment (무선 네트워크 환경에서 기기 관리 및 사용자 인증을 위한 안전한 통신 프레임워크 설계)

  • Park, JungOh
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.2
    • /
    • pp.43-52
    • /
    • 2019
  • The recent technological developments of smart devices, multiple services are provided to enhance the users' quality of life including smart city, smart energy, smart car, smart healthcare, smart home, and so on. Academia and industries try to provide the users with convenient services upon seamless technological research and developments. Also, whenever and wherever a variety of services can be used without any limitation on the place and time upon connecting with different types of devices. However, security weaknesses due to integrations of multiple technological elements have been detected resulting in the leakage of user information, account hacking, and privacy leakage, threats to people's lives by device operation have been raised. In this paper, safer communication framework is suggested by device control and user authentication in the mobile network environment. After implementations of registration and authentication processes by users and devices, safe communication protocol is designed based on this. Also, renewal process is designed according to the safe control of the device. In the performance evaluation, safety was analyzed on the attack of protocol change weakness occurred in the existing system, service halt, data leakage, illegal operation control of message, and so on, which confirmed the enhanced speed approximately by 8% and 23% in the communication and verification parts, respectively, compared to the existing system.

Smart Phone Based Infrared Remote Controller without Restriction of Target Devices (대상 기기에 제한이 없는 스마트폰 기반의 적외선 리모컨)

  • Hwang, Seong-Jin;Lee, Mi-Hyun;Hong, Jeong-Pyo;Park, Tae-Geun;Kim, Yong-Seok
    • Journal of Industrial Technology
    • /
    • v.34
    • /
    • pp.27-32
    • /
    • 2014
  • Infrared remote controllers are widely used in controlling electronic devices due to its simplicity and convenience. This paper presents a smart phone application unifying any infrared remote controllers. We can select a device from device list menu of the application. Any new device can be added easily by downloading the protocol file of the device from protocol file server. Remote controller protocol files are stored in audio file format, and the file related to a specific menu button is transmitted through the audio jack of smart phones. The protocol file server is a standard file server, and protocol files for various devices are collected by infrared receiver module. For smart phones without infrared facility, a small infrared module translating audio signal to infrared signal is applied.

  • PDF

Architecture Design of Smart Mobile Platform for Industry (산업용 모바일 융합단말 플랫폼 구조 설계)

  • Park, Chong-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.765-768
    • /
    • 2011
  • At present, the smart mobile device has been big recognition in general due to fusion, mobility and convenience. On the one hand Industy also needs smart mobile device because more and complex data processing. Hereupon this thesis will study reflected industry needs smart mobile pad's design structure, and applicable area to use this device.

  • PDF

Sewing-enabled electric button for smart fabric

  • Lee, Kang-Ho;Lee, Dongkyu;Lee, Yong-Goo;Kwon, Ohwon
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.67-70
    • /
    • 2021
  • A new button-shaped electrical device was developed for a smart fabric. This electric button can be sewn anywhere on the garment, similar to a traditional button fastener. t not only performs a decorative function but also makes the fabric suitable for use in Internet of Things (IoT) applications. It has metallic through-holes such that it can be fastened onto a fabric by conductive sewing threads. When threaded through metallic holes, the button can communicate with the external device by transmitting and receiving data. In addition, it adds specific functions by stacking a detachable application layer on the base layer. It is robust to frequent washing, and thus has excellent repeatability for use as an IoT device. The feasibility of the electric button was successfully demonstrated by its ability to identify the physical activities of walking and running, monitoring ambient temperature, and turning on LED lights.

Detecting Bladder Biomarkers for Closed-Loop Neuromodulation: A Technological Review

  • Park, Eunkyoung;Lee, Jae-Woong;Kang, Minhee;Cho, Kyeongwon;Cho, Baek Hwan;Lee, Kyu-Sung
    • International Neurourology Journal
    • /
    • v.22 no.4
    • /
    • pp.228-236
    • /
    • 2018
  • Neuromodulation was introduced for patients with poor outcomes from the existing traditional treatment approaches. It is well-established as an alternative, novel treatment option for voiding dysfunction. The current system of neuromodulation uses an open-loop system that only delivers continuous stimulation without considering the patient's state changes. Though the conventional open-loop system has shown positive clinical results, it can cause problems such as decreased efficacy over time due to neural habituation, higher risk of tissue damage, and lower battery life. Therefore, there is a need for a closed-loop system to overcome the disadvantages of existing systems. The closed-loop neuromodulation includes a system to monitor and stimulate micturition reflex pathways from the lower urinary tract, as well as the central nervous system. In this paper, we reviewed the current technological status to measure biomarker for closed-loop neuromodulation systems for voiding dysfunction.