• Title/Summary/Keyword: Smart wearable device

Search Result 169, Processing Time 0.02 seconds

Development and Evaluation of Wearable Smart Clothing for Combined EMG Devices (웨어러블 근전도 디바이스 결합형 스마트의류 개발 및 성능평가)

  • Sojung Lee;Hyelim Kim;Wonyoung Jeong
    • Fashion & Textile Research Journal
    • /
    • v.25 no.2
    • /
    • pp.210-220
    • /
    • 2023
  • Recently, smart wearable products, including electromyography (EMG) measurement devices and clothing, have been developed to monitor users' exercise levels, muscle activation, and muscle balance more effectively during fitness activities. However, technical and socioeconomic barriers, such as flexibility and durability, still pose challenges in terms of comfort, ease of wear, and wearability of smart clothing, which includes devices and circuits. To address these issues, this study developed a wearable EMG device integrated with clothing to collect valid EMG signals from desired muscles while maintaining comfort, functionality, and ease of wear. After deriving a combined structure that could stably position the wearable device within the clothing, a prototype was manufactured and evaluated for fit, compression, comfort, and exercise comfort test by ten participants (height = 176.2 cm, weight = 76.4 kg, chest circumference = 101.2 cm). The study found that the prototype had smaller circumferences around the chest, waist, and abdomen compared to commercial products, resulting in lower ratings for wearing comfort and ease of wear. However, the prototype received high ratings for fitting, pressure, and the exercise comfort test. Valid signals were obtained when the EMG device was combined to the prototype for the rectus femoris muscle, indicating stable positioning of the device during exercise.

The technical elements of the wearable device (웨어러블 디바이스의 기술 요소)

  • Shim, Hyun-bo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.259-263
    • /
    • 2014
  • In the ICT field, one among the remarkable issue of in 2014 is the "Wear computer", that is, the opening of "Wearable Device" age. The Samsung galaxy gear and products like Google glass and Apple watch are done as the wearable device. According to the definition of MIT Media Lab, the wearable device adheres to the body and is included till the application which names all things doing the computing action and can perform the partial computing function. And the wearable device is one brain. If the wearable device is popularized, it will be changed many things. First of all, 2 hands become free. My body is due to be connected to 24 hours Internet. It is not level that it adheres the Smart phone or device to the body and the brain role in which the device is connected outside directly, the human body is done. In this paper, the related companies analyze the technical elements of this wearable device especially.

  • PDF

A Study on Practical Function of Neoprene Fabric Design in wearable Device for Golf Posture Training: Focus on Assistance Band with Arduino/Flex Sensor (네오프렌(Neoprene)소재로 구성된 골프자세 훈련용 웨어러블 디바이스의 실용적 기능에 관한 연구: Flex Sensor 및 아두이노를 장착한 보조밴드를 중심으로)

  • Lee, Euna;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.18 no.4
    • /
    • pp.1-14
    • /
    • 2014
  • Currently smart textile market is rapidly expanding and the demand is increasing integration of an electronic fiber circuit. The garments are an attractive platform for wearable device. This is one of the integration techniques, which consists of is the selective introduction of conductive yarns into the fabric through knitting, weaving or embroidering. The aim of this work is to develop a golf bend driven prototype design for an attachable Arduino that can be used to assess elbow motion. The process begins with the development of a wearable device technique that uses conductive yarn and flex sensor for measurement of elbow bending movements. Also this paper describes and discusses resistance value of zigzag embroidery of the conductive yarns on the tensile properties of the fabrics. Furthermore, by forming a circuit using an Arduino and flex sensor the prototype was created with an assistance band for golf posture training. This study provides valuable information to those interested in the future directions of the smart fashion industry.

Exploring Requirements of the Smart Textiles for Bio-Signal Measurement Based on Smart Watch User Sensibility (스마트워치 사용자감성에 기반한 생체신호측정용 스마트 텍스타일의 요구조건 탐색)

  • Jang, Eunji;Kim, Inhwan;Lee, Eu-Gene;Cho, Gilsoo
    • Science of Emotion and Sensibility
    • /
    • v.20 no.4
    • /
    • pp.89-100
    • /
    • 2017
  • Since smart devices are able to efficiently provide information without barriers of time and location, they are widely utilized with advent of the hyper-connected society. Especially, the smart devices have been developed in the form of wearable devices for mutual interaction between human and objects. Smart clothing, which embeds smart devices within clothes, measures and obtains a variety of bio-signals as it is in close contact with the human bodies. Conventional smart clothing generated wearers' discomfort because they were developed by simple attachment of electronic devices to clothes. Therefore, it is highly recommended to develop novel smart clothing based on smart textiles which integrate electronic devices as parts of textiles. As smart watches are currently the most available wearable devices in the market, smart watch users were selected in this study, for the purpose of investigating core needs of wearable smart device users based on the user experience and user's sensibility. Qualitative research was performed through semi-structured interview in order to obtain detailed answers about user sensibility based on smart watch user experience. After the in-depth interview, the user's sensibility was categorized into four aspects; functional, aesthetic, social, and empirical. Sensibility adjectives and key words were assigned to each aspect and their frequency was analyzed. It was the functional aspect of sensibility that the wearable device users require the most. The results of this study will be utilized as a fundamental data to develop the smart textiles required for the next generation of smart clothing which is attracting as a future wearable device.

Analysis of the Categorization of Wearable devices for Infants and Children by Function, Characteristics, and Improvements (영유아용 웨어러블 디바이스의 기능별 분류, 특성 및 개선점에 대한 분석)

  • Roh, Eui Kyung
    • Fashion & Textile Research Journal
    • /
    • v.23 no.5
    • /
    • pp.655-666
    • /
    • 2021
  • This study aims to classify wearable devices for infants and children according to their function, and to analyze the types and attachment methods of the devices by function, operating system, characteristics of materials, and types of batteries, and to identify the points for improvement. Forty-eight types of devices investigated through previous studies and keyword research online were analyzed. Wearable devices for infants and children were classified according to their functions into wearable monitors, wearable thermometers, GPS trackers, and smart watches. Devices had different shapes and attachment methods according to their functions, and were mainly clothes or accessory types. The accessory type devices were attached to the body using velcro, clips, bands, or adhesives. Wearable monitors and thermometers mainly used Bluetooth to transmit data wirelessly, and location trackers used various combinations of 4G(LTE), 5G networks, GPS, Wi-Fi, and Bluetooth. Smartwatches had different functions depending on whether smart phones were linked to them or not. Wearable monitors and thermometers mainly used by infants provided material information, but other devices did not. These devices used rechargeable, replaceable, non-rechargeable or non-replaceable batteries. Wearable devices need to be improved to reduce the discomfort experienced by infants and children due to the attachment position, malfunction, skin trouble caused by materials, short time of use of batteries, version conflict and complexity with the device when linking with a smart phone, and non-operation when using Bluetooth.

A Study on Trends of Wearable Device Development for Infants (영유아용 웨어러블 디바이스의 개발 동향 조사)

  • Keum, Bora;Kim, Yumi;Kim, Sook-Jin
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.19 no.4
    • /
    • pp.29-41
    • /
    • 2017
  • Because infants lack full communication skills and are not active main agents, nurturing and protection are essential. The value of smart devices that can help prevent potential threats and manage infant care is evaluated highly. This study offers basic research data that contributes to the development of devices for infant and parents as well as to future planning. This study compared and analyzed literature materials and visual materials based on news articles, advanced research, and official websites of brands. The research ranges and subjects are wearable devices for infants that were released or will be released between 2014 and 2017. Wearable devices that help protect and manage infant care are roughly separated into clothing, accessory, and the like. In this study, four kinds of clothing products, six kinds of accessories products, and fifteen kinds of other products were researched and a total of 25 kinds of products were analyzed. Categories was made in accordance with morphological characteristics, main features, materials and the design of wearable devices for infants depending on the device features. Wearable devices for infants that will be developed in the future must be based on a variety of suggestions in order to know best how to attach a sensor to an infant. From this study, the deduced trend analysis of wearable devices for infants can suggest new ways for follow-up studies as well as product development.

  • PDF

Suggestion of Functional Smart Jacket Based on Wearable Technology (웨어러블 테크놀로지에 기반을 둔 고기능 스마트 재킷 설계 제안)

  • Lee, Jeong-Ran
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.3
    • /
    • pp.292-303
    • /
    • 2011
  • This research suggested a draft proposal for a smart jacket design, which has applied wearable technologies to provide convenience in daily life. The smart jacket combined with a vest was the casual item for autumn and winter. The heating device was composed of the heating element, battery, controller, electric wire, connector, switch, and charger. A stable electronic conductor fiber of good heating effect with a flexible zigzag form has been selected for the heating element. The lighting device has been made in a way that attaches the LED and its power controller in the same mechanical device. As the result of the wearing test, the heating effect turned out to be effective in the order of: back, both the back and abdomen and only the abdomen. When wearing a smart jacket, the back and abdomen have been selected as favorable body parts for heating. Pockets and hems are selected as the adequate place to attach the LED lighting, and the brightness of LED lighting has turned out to be suitable and useful. Based on the test results, the first draft proposal has attached the heating element only in the back and its controller located in the inside pocket of the vest. In addition, the LED has been attached to the front pocket of the jacket. As to the second draft proposal, heating elements have been placed in the back and the abdomen. Each controller for the heating elements has been placed in the front and inside pocket of vest, and the LED lighting has been attached to the hem of the jacket. The smart jacket combined with a wearable device was assessed by functioning categories. The user showed a high satisfaction in the heating and illuminating function of a smart jacket.

Emergency Support System using Smart Device (스마트 기기를 활용한 응급 지원 시스템)

  • Jeong, Pil-seong;Cho, Yang-hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1791-1798
    • /
    • 2016
  • Recently, research about ESS(Emergency Support System) has been actively carried out to provide a variety of medical services using smart devices and wearable devices. Smart healthcare provides a personalized health care service using various types of bio-signal measuring sensors and smart devices. For the smart healthcare using a smart device, it is need to research about personal health monitoring using a smart wearable devices, and also need to research on service methods for first aid measures after an emergency. In this paper, we proposed about group management based emergency support system, that is monitoring about personal bio signal using smart devices and wearable devices to protect patient's life. The system notices to the medical volunteers based on the position information when an emergency situation. In addition, we have designed and implemented an emergency support system providing the information of the patient on the display when transmitting a picture of a patient using a smart device to the server.

Wearable Sensing Device Design for Biological Monitoring (생체정보 모니터링을 위한 웨어러블 센싱 디바이스 디자인)

  • Lee, Jee Hyun;Lee, Eun Ji;Kim, Ji Eun;Kim, Yoolee;Cho, Sinwon
    • Journal of the Korean Society of Costume
    • /
    • v.65 no.1
    • /
    • pp.118-135
    • /
    • 2015
  • In recent years, smart clothing had been developed in order to better detect and monitor physical movement of the patient, so that such activities such as location identification and biometric recognition could be done. However, most of the sensing devices of smart clothing were limited to smart sensing sports clothing and the designs did not consider the physical characteristics and the behavior of the wearer. Therefore, this study aimed to create an open protection system by developing a wearable sensing device for health monitoring and location information. For this purpose, this study developed eleven types of wearable sensing design that could be commercially sold and worn by people who needed their biological information to be constantly monitored. The study conducted four tests in order to develop three types of sensing devices for various sensing wears. The purpose of this study was to expand the user rang of smart sensing wears, and provide a foundation for the development of distinctive wearable sensing devices reflecting the user. Furthermore, contribute to the design for the person subject to protection.

Trend of IoT-based Healthcare Service (사물인터넷 기반 헬스케어 서비스 기술 동향)

  • Heo, Sung-Phil;Noh, Dong-Hee;Moon, Chang Bae;Kim, Dong-Sung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.4
    • /
    • pp.221-231
    • /
    • 2015
  • This paper provides the trend of Internet of Things (IoT) for smart healthcare services and applications. IoT has provided a promising opportunity to build intelligent healthcare system and smart wearable applications by using the growing capability of wireless mobile devices, interactive sensors/actuators, and RFID technologies. For analysis of state-of-art technology of smart healthcare system, this paper includes comparative analysis and investigation of existing standard, network protocol, and devices, etc. In this paper, we examine the market trend of IoT healthcare. In particular, we examine the variety of IoT based healthcare type such as mobile, wearable device. After that, we examine the technologies of IoT healthcare such as standard, sensor, network and security. This survey contributes to better understanding of the challenges in existing IoT healthcare and further new light on future research directions.