Browse > Article
http://dx.doi.org/10.12940/jfb.2014.18.4.1

A Study on Practical Function of Neoprene Fabric Design in wearable Device for Golf Posture Training: Focus on Assistance Band with Arduino/Flex Sensor  

Lee, Euna (Dept. of Clothing & Textiles, Ewha Womans University)
Kim, Jongjun (Dept. of Clothing & Textiles, Ewha Womans University)
Publication Information
Journal of Fashion Business / v.18, no.4, 2014 , pp. 1-14 More about this Journal
Abstract
Currently smart textile market is rapidly expanding and the demand is increasing integration of an electronic fiber circuit. The garments are an attractive platform for wearable device. This is one of the integration techniques, which consists of is the selective introduction of conductive yarns into the fabric through knitting, weaving or embroidering. The aim of this work is to develop a golf bend driven prototype design for an attachable Arduino that can be used to assess elbow motion. The process begins with the development of a wearable device technique that uses conductive yarn and flex sensor for measurement of elbow bending movements. Also this paper describes and discusses resistance value of zigzag embroidery of the conductive yarns on the tensile properties of the fabrics. Furthermore, by forming a circuit using an Arduino and flex sensor the prototype was created with an assistance band for golf posture training. This study provides valuable information to those interested in the future directions of the smart fashion industry.
Keywords
Aduino; conductive yarn; flex sensor; wearable device; zigzag embroidery;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Park, S., & Kim. W. (2013). Electronic and Smart Textiles. Polymer Science and Technology, 24(1), 38-44.   DOI   ScienceOn
2 Post, E. R., Orth, M., Russo, P., & Gershenfeld, N. (2000). E-broidery: Design and fabrication of textile-based computing. IBM Systems Journal, 39(3.4), 840-860.   DOI   ScienceOn
3 Roh, J., Chi, Y., Lee, J., Nam, S., & Kang, T. J. (2010). Characterization of embroidered inductors. Smart Materials and Structures, 19(11), 5020.
4 Ryu. J. (2012). Conductive materials for textile based sensor design (Unpublished doctoral dissertation). Kyungbuk University, Daegu, Korea.
5 Scilingo, E. P., Lorussi, F., Mazzoldi, A., & De Rossi, D. (2003). Strain-sensing fabrics for wearable kinaesthetic-like systems. Sensors Journal of the IEEE, 3(4), 460-467.   DOI   ScienceOn
6 Ko, Y., & Kim, J. (2013). Effect of fabric properties used for the loop type decorative elements on the 3-dimensional shape. The Korean Society of Fashion Business, 17(3), 30-47.   과학기술학회마을   DOI   ScienceOn
7 Zhang, H., Tao, X., Yu, T., & Wang, S. (2006). Conductive knitted fabric as large-strain gauge under high temperature. Sensors and Actuators A: Physical, 126(1), 129-140.   DOI   ScienceOn
8 Zheyu, W., Lanlin, Z., Bayram, Y., & Volakis, J. L. (2012). Embroidered conductive fibers on polymer composite for conformal antennas. Antennas and Propagation of the IEEE Transactions, 60(9), 4141-4147.   DOI   ScienceOn
9 Zysset, C., Cherenack, K., Kinkeldei, T., & Troster, G. (2010). Weaving integrated circuits into textiles. International Symposium on Wearable Computers of the ISWC, 1-8.
10 Yuehui, O., & Chappell, W. J. (2008). High frequency properties of electro-textiles for wearable antenna applications. Antennas and Propagation of the IEEE Transactions, 56(2), 381-389.   DOI   ScienceOn
11 Akita, J., Shinmura, T., Murakami, T., Yao, M., & Toda, M. (2006). Flexible network system for wearable computing using conductive fabric. Proceedings of 2006 Annual International Conference on Mobile Data Management (p. 101). Washington DC: IEEE Computer Society.
12 Atalay, O., & Kennon, W. R. (2014). Knitted strain sensors: Impact of design parameters on sensing properties. Sensors, 14(3), 4712-4730.   DOI   ScienceOn
13 Axisa, F., Brosteaux, D., De Leersnyder, E., Bossuyt, F., Vanfleteren, J., Hermans, B., & Puers, R. (2007). Biomedical stretchable systems using mid based stretchable electronics technology. 29th Annual International Conference on Engineering in Medicine and Biology Society of the IEEE, 2007, 5687-5690.
14 Cho, G,. (2006). The latest clothing material. Seoul: Sigmaprensa.
15 Lorussi, F., Scilingo, E., Tesconi, M., Tognetti, A., & De Rossi, D. (2003). Wearable sensing garment for posture detection, rehabilitation and tele-medicine. Proceedings of 4th International Special Topic Conference on Information Technology Applications in Biomedicine (pp. 287-290). Washington DC: IEEE Computer Society.
16 Lee, S., Lee, C., Kim, K., & Kim, J. (2008). Fabrication of active cooling e-textiles. The Korea Society of Dyers and Finishers, 20(6), 82-86.   과학기술학회마을   DOI   ScienceOn
17 Lim, S. (2013). A Development of Golf Coaching using Human Motion Analysis. Korea Safety Management and Science, 15(2), 55-61.   과학기술학회마을   DOI   ScienceOn
18 Linz, T., Kallmayer, C., Aschenbrenner, R., & Reichl, H. (2006). Fully untegrated EKG shirt based on embroidered electrical interconnections with conductive yarn and miniaturized flexible electronics. Proceedings of 9th International Workshop on Wearable and Implantable Body Sensor Networks (pp. 23-26). Cambridge: IEEE Computer Society.
19 Marculescu, D., Marculescu, R., Zamora, N. H., Stanley-Marbell, P., Khosla, P. K., Park, S., ... Weber, W. (2003). Electronic textiles: A platform for pervasive computing. Proceedings of the IEEE, 91(12), 1995-2018.   DOI   ScienceOn
20 Meyer, J., Arnrich, B., Schumm, J., & Troster, G. (2010). Design and modeling of a textile pressure sensor for sitting posture classification. Sensors Journal IEEE, 10(8), 1391-1398.   DOI   ScienceOn
21 Orth, M. (2002). Defining flexibility and sewability in conductive yarns. Proceedings of the MRS, 736(1), 1-4.
22 Song, H., Lee, J., Kang, D., Cho, H., Cho, H., Lee, J., & Lee, Y. (2010). Textile electrodes of jacquard woven fabrics for biosignal measurement. The Journal of the Textile Institute, 101(8), 758-770.   DOI
23 Choi, K., Kim, J., & Song, N. (2012). A study on the analysis of 3D scanning of knit stitches and modeling system-jersey, rib, and cable stitches. The Korean Society of Fashion Business, 16(3), 125-135.   과학기술학회마을   DOI   ScienceOn
24 Dion, G. (2013). Garment device: Challenges to fabrication of wearable technology. Proceedings of the 8th International Conference on Body Area Networks, 97-102.
25 Shaw, R. K., Long, B. R., Werner, D. H., & Gavrin, A. (2007). The characterization of conductive textile materials intended for radio frequency applications. Antennas and Propagation Magazine of the IEEE, 49(3), 28-40.   DOI   ScienceOn
26 Silva, N. L., Goncalves, L., & Carvalho, H. (2013). Deposition of conductive materials on textile and polymeric flexible substrates. Journal of Materials Science: Materials in Electronics, 24(2), 635-643.
27 Song, C. (2008). Golf Swing Diagnosis Equipment based on MEMS Inertial Sensors. The Korea Society of Mechanical Engineers, 2008(11), 1761-1766.
28 Strazdiene, E., Blazevic, P., Vegys, A., & Dapkuniene, K. (2007). New tendencies of wearable electronics application in smart clothing. Electronics & Electrical Engineering, 73(1), 21-24.
29 Feng, A., Knieser, M., Rizkalla, M., King, B., Salama, P., & Bowen, F. (2012). Embedded system for sensor communication and security. Information Security of the IET, 6(2), 111-121.   DOI   ScienceOn
30 Paradiso, R., Loriga, G., & Taccini, N. (2005). A wearable health care system based on knitted integrated sensors. Information Technology in Biomedicine IEEE Transactions, 9(3), 337-344.   DOI   ScienceOn
31 Gimpel, S., Mohring, U., Muller, H., Neudeck, A., & Scheibner, W. (2004). Textile-based electronic substrate technology. Journal of Industrial Textiles, 33(3), 179-189.   DOI   ScienceOn
32 Gioberto, G., Coughlin, J., Bibeau, K., & Dunne, L. E. (2013). Detecting bends and fabric folds using stitched sensors. Proceedings of the 17th Annual International Symposium on Wearable Computers, 53-56.
33 Ha, Y., & Kim, Y. (2014). A study of wearable computer for extending expression on the stage. The Korean Society of Fashion Design, 14(1), 1-15.
34 Kallmayer, C., & Simon, E. (2012). Large area sensor integration in textiles. Proceedings of 9th International Multi-Conference on Systems, Signals and Devices (SSD) (pp. 1-5). Chemnitz: IEEE Computer Society.
35 Kannaian, T., Neelaveni, R., & Thilagavathi, G. (2013). Design and development of embroidered textile electrodes for continuous measurement of electrocardiogram signals. Journal of Industrial Textiles, 42(3), 303-318.   DOI
36 Kim, D., Lee, J., & Ahn, H. (2011). Design of virtual coaching device for golf putting. The Korea Society of Mechanical Engineers, 2011(5), 339-342.
37 Kim, M., & Kim, J. (2013). A study on three-dimensional effects and deformation of textile fabrics: Dynamic deformations of silk fabrics. The Korean Society of Fashion Business, 17(6), 28-43.   과학기술학회마을   DOI   ScienceOn
38 Lee, Y., & Kim, J. (2011). A study on the drape profile analysis of the apparel textiles and 3D virtual textiles using a 3D digital clothing software. The Korean Society of Fashion Business, 15(5), 103-114.   과학기술학회마을
39 Li, L., Au, W., Li, Y., Wan, K., Wan, S., & Wong, K. (2008). Electromechanical analysis of conductive yarn knitted in plain knitting stitch under unidirectional extension. Proceedings of International Symposium on Textile Bioengineering and Informatics Symposium (pp. 14-16). Hong Kong: Institute of Textiles and Clothing.