• Title/Summary/Keyword: Smart tuned mass damper

Search Result 72, Processing Time 0.025 seconds

Comparing fuzzy type-1 and -2 in semi-active control with TMD considering uncertainties

  • Ramezani, Meysam;Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.155-171
    • /
    • 2019
  • In this study, Semi-active Tuned Mass Dampers (STMDs) are employed in order to cover the prevailing uncertainties and promote the efficiency of the Tuned Mass Dampers (TMDs) to mitigate undesirable structural vibrations. The damping ratio is determined using type-1 and type-2 Fuzzy Logic Controllers (T1 and T2 FLC) based on the response of the structure. In order to increase the efficiency of the FLC, the output membership functions are optimized using genetic algorithm. The results show that the proposed FLC can reduce the sensitivity of STMD to excitation records. The obtained results indicate the best operation for T1 FLC among the other control systems when the uncertainties are neglected. According to the irrefutable uncertainties, three supplies for these uncertainties such as time delay, sensors measurement noises and the differences between real and software model, are investigated. Considering these uncertainties, the efficiencies of T1 FLC, ground-hook velocity-based, displacement-based and TMD reduce significantly. The reduction rates for these algorithms are 12.66%, 26.43%, 20.98% and 21.77%, respectively. However, due to nonlinear behavior and considering a range of uncertainties in membership functions, T2 FLC with 7.2% reduction has robust performance against uncertainties compared to other controlling systems. Therefore, it can be used in actual applications more confidently.

Smart modified repetitive-control design for nonlinear structure with tuned mass damper

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.107-114
    • /
    • 2023
  • A new intelligent adaptive control scheme was proposed that combines observer disturbance-based adaptive control and fuzzy adaptive control for a composite structure with a mass-adjustable damper. The most important advantage is that the control structures do not need to know the uncertainty limits and the interference effect is eliminated. Three adjustable parameters in LMI are used to control the gain of the 2D fuzzy control. Binary performance indices with weighted matrices are constructed to separately evaluate validation and training performance using the revalidation learning function. Determining the appropriate weight matrix balances control and learning efficiency and prevents large gains in control. It is proved that the stability of the control system can be ensured by a linear matrix theory of equality based on Lyapunov's theory. Simulation results show that the multilevel simulation approach combines accuracy with high computational efficiency. The M-TMD system, by slightly reducing critical joint load amplitudes, can significantly improve the overall response of an uncontrolled structure.

Performance of a 3D pendulum tuned mass damper in offshore wind turbines under multiple hazards and system variations

  • Sun, Chao;Jahangiri, Vahid;Sun, Hui
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.53-65
    • /
    • 2019
  • Misaligned wind-wave and seismic loading render offshore wind turbines suffering from excessive bi-directional vibration. However, most of existing research in this field focused on unidirectional vibration mitigation, which is insufficient for research and real application. Based on the authors' previous work (Sun and Jahangiri 2018), the present study uses a three dimensional pendulum tuned mass damper (3d-PTMD) to mitigate the nacelle structural response in the fore-aft and side-side directions under wind, wave and near-fault ground motions. An analytical model of the offshore wind turbine coupled with the 3d-PTMD is established wherein the interaction between the blades and the tower is modelled. Aerodynamic loading is computed using the Blade Element Momentum (BEM) method where the Prandtl's tip loss factor and the Glauert correction are considered. Wave loading is computed using Morison equation in collaboration with the strip theory. Performance of the 3d-PTMD is examined on a National Renewable Energy Lab (NREL) monopile 5 MW baseline wind turbine under misaligned wind-wave and near-fault ground motions. The robustness of the mitigation performance of the 3d-PTMD under system variations is studied. Dual linear TMDs are used for comparison. Research results show that the 3d-PTMD responds more rapidly and provides better mitigation of the bi-directional response caused by misaligned wind, wave and near-fault ground motions. Under system variations, the 3d-PTMD is found to be more robust than the dual linear TMDs to overcome the detuning effect. Moreover, the 3d-PTMD with a mass ratio of 2% can mitigate the short-term fatigue damage of the offshore wind turbine tower by up to 90%.

Fuzzy Control of Smart TMD using Multi-Objective Genetic Algorithm (다목적 유전자알고리즘을 이용한 스마트 TMD의 퍼지제어)

  • Kang, Joo-Won;Kim, Hyun-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.69-78
    • /
    • 2011
  • In this study, an optimization method using multi-objective genetic algorithm(MOGA) has been proposed to develop a fuzzy control algorithm that can effectively control a smart tuned mass damper(TMD). A 76-story benchmark building subjected to wind load was selected as an example structure. The smart TMD consists of 100kN MR damper and the natural period of the smart TMD was tuned to the first mode natural period of the example structure. Damping force of MR damper is controlled to reduce the wind-induced responses of the example structure by a fuzzy logic controller. Two input variables of the fuzzy logic controller are the acceleration of 75th floor and the displacement of the smart TMD and the output variable is the command voltage sent to MR damper. Multi-objective genetic algorithm(NSGA-II) was used for optimization of the fuzzy logic controller and the acceleration of 75th story and the displacement of the smart TMD were used as objective function. After optimization, a series of fuzzy logic controllers which could appropriately reduce both wind responses of the building and smart TMD were obtained. Based on numerical results, it has been shown that the control performance of the smart TMD is much better than that of the passive TMD and it is even better than that of the sample active TMD in some cases.

Ambient modal identification of structures equipped with tuned mass dampers using parallel factor blind source separation

  • Sadhu, A.;Hazraa, B.;Narasimhan, S.
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.257-280
    • /
    • 2014
  • In this paper, a novel PARAllel FACtor (PARAFAC) decomposition based Blind Source Separation (BSS) algorithm is proposed for modal identification of structures equipped with tuned mass dampers. Tuned mass dampers (TMDs) are extremely effective vibration absorbers in tall flexible structures, but prone to get de-tuned due to accidental changes in structural properties, alteration in operating conditions, and incorrect design forecasts. Presence of closely spaced modes in structures coupled with TMDs renders output-only modal identification difficult. Over the last decade, second-order BSS algorithms have shown significant promise in the area of ambient modal identification. These methods employ joint diagonalization of covariance matrices of measurements to estimate the mixing matrix (mode shape coefficients) and sources (modal responses). Recently, PARAFAC BSS model has evolved as a powerful multi-linear algebra tool for decomposing an $n^{th}$ order tensor into a number of rank-1 tensors. This method is utilized in the context of modal identification in the present study. Covariance matrices of measurements at several lags are used to form a $3^{rd}$ order tensor and then PARAFAC decomposition is employed to obtain the desired number of components, comprising of modal responses and the mixing matrix. The strong uniqueness properties of PARAFAC models enable direct source separation with fine spectral resolution even in cases where the number of sensor observations is less compared to the number of target modes, i.e., the underdetermined case. This capability is exploited to separate closely spaced modes of the TMDs using partial measurements, and subsequently to estimate modal parameters. The proposed method is validated using extensive numerical studies comprising of multi-degree-of-freedom simulation models equipped with TMDs, as well as with an experimental set-up.

Extracting parameters of TMD and primary structure from the combined system responses

  • Wang, Jer-Fu;Lin, Chi-Chang
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.937-960
    • /
    • 2015
  • Tuned mass dampers (TMDs) have been a prevalent vibration control device for suppressing excessive vibration because of environmental loadings in contemporary tall buildings since the mid-1970s. A TMD must be tuned to the natural frequency of the primary structure to be effective. In practice, a TMD may be assembled in situ, simultaneously with the building construction. In such a situation, the respective dynamic properties of the TMD device and building cannot be identified to determine the tuning status of the TMD. For this purpose, a methodology was developed to obtain the parameters of the TMD and primary building on the basis of the eigenparameters of any two complex modes of the combined building-TMD system. The theory was derived in state-space to characterize the nonclassical damping feature of the system, and combined with a system identification technique to obtain the system eigenparameters using the acceleration measurements. The proposed procedure was first demonstrated using a numerical verification and then applied to real, experimental data of a large-scale building-TMD system. The results showed that the procedure is capable of identifying the respective parameters of the TMD and primary structure and is applicable in real implementations by using only the acceleration response measurements of the TMD and its located floor.

Development of ETMD(Electromagnetic Tuned Mass Damper) for Smart Control of Structure (구조물 스마트제어를 위한 ETMD(Electromagnetic Tuned Mass Damper)개발)

  • Jeon, Seung-Gon;Heo, Gwang-Hee;Lee, Chin-Ok;Lee, Jae-Hoon;Kim, Dae-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.21-28
    • /
    • 2022
  • The TMD has a simple structure than other vibration control devices and shows excellent control performance for the simple harmonic vibration generated in the structure. However, the vibration control range is narrower than other control devices, making it vulnerable to vibration cycles caused by unexpected external loads. The ETMD developed in this study consisted of Mass with electromagnets. Therefore when supplying a current, the magnetic field is formed to increase the friction force with the friction plate, thereby instantaneously controlling the behavior of the Mass. The experiment was conducted to compare the control performance of the control device by installing the ETMD developed for control performance evaluation in the center of the model simple beam bridge to forced excitation at 3.02 Hz where the maximum bending displacement occurs. As a result of the experiment, ETMD exhibited excellent control performance with a maximum bending displacement attenuation rate of 57.51%.

Performance of TMDs on nonlinear structures subjected to near-fault earthquakes

  • Domizio, Martin;Ambrosini, Daniel;Curadelli, Oscar
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.725-742
    • /
    • 2015
  • Tuned mass dampers (TMD) are devices employed in vibration control since the beginning of the twentieth century. However, their implementation for controlling the seismic response in civil structures is more recent. While the efficiency of TMD on structures under far-field earthquakes has been demonstrated, the convenience of its employment against near-fault earthquakes is still under discussion. In this context, the study of this type of device is raised, not as an alternative to the seismic isolation, which is clearly a better choice for new buildings, but rather as an improvement in the structural safety of existing buildings. Seismic records with an impulsive character have been registered in the vicinity of faults that cause seismic events. In this paper, the ability of TMD to control the response of structures that experience inelastic deformations and eventually reach collapse subject to the action of such earthquakes is studied. The results of a series of nonlinear dynamic analyses are presented. These analyses are performed on a numerical model of a structure under the action of near-fault earthquakes. The structure analyzed in this study is a steel frame which behaves as a single degree of freedom (SDOF) system. TMD with different mass values are added on the numerical model of the structure, and the TMD performance is evaluated by comparing the response of the structure with and without the control device.

TMD effectiveness in nonlinear RC structures subjected to near fault earthquakes

  • Domizio, Martin N.;Ambrosini, Daniel;Curadelli, Oscar
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.447-457
    • /
    • 2019
  • The use of Tuned mass dampers (TMD) has proved to be effective in reducing the effects of vibrations caused by wind loads and far-field seismic action. However, its effectiveness in controlling the dynamic response of structures under near-fault earthquakes is still under discussion. In this case, the uncertainty about the TMD performance arises from the short significant duration of near-fault ground motions. In this work, the TMD effectiveness for increasing the safety margin against collapse of structures subjected to near-fault earthquakes is investigated. In order to evaluate the TMD performance in the proposed scenario, the nonlinear dynamic response of two reinforced concrete (RC) frames was analyzed. TMDs with different mass values were added to these structures, and a set of near-fault records with frequency content close to the fundamental frequency of the structure was employed. Through a series of nonlinear dynamic analysis, the minimum amplitude of each seismic record that causes the structural collapse was found. By comparing this value, called collapse acceleration, for the case of the structures with and without TMD, the benefit produced by the addition of the control device was established.

Performance of passive and active MTMDs in seismic response of Ahvaz cable-stayed bridge

  • Zahrai, Seyed Mehdi;Froozanfar, Mohammad
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.449-466
    • /
    • 2019
  • Cable-stayed bridges are attractive due to their beauty, reducing material consumption, less harm to the environment and so on, in comparison with other kinds of bridges. As a massive structure with long period and low damping (0.3 to 2%) under many dynamic loads, these bridges are susceptible to fatigue, serviceability disorder, damage or even collapse. Tuned Mass Damper (TMD) is a suitable controlling system to reduce the vibrations and prevent the threats in such bridges. In this paper, Multi Tuned Mass Damper (MTMD) system is added to the Ahvaz cable stayed Bridge in Iran, to reduce its seismic vibrations. First, the bridge is modeled in SAP2000 followed with result verification. Dead and live loads and the moving loads have been assigned to the bridge. Then the finite element model is developed in OpenSees, with the goal of running a nonlinear time-history analysis. Three far-field and three near-field earthquake records are imposed to the model after scaling to the PGA of 0.25 g, 0.4 g, 0.55 g and 0.7 g. Two MTMD systems, passive and active, with the number of TMDs from 1 to 8, are placed in specific points of the main span of bridge, adding a total mass ratio of 1 to 10% to the bridge. The parameters of the TMDs are optimized using Genetic Algorithm (GA). Also, the optimum force for active control is achieved by Fuzzy Logic Control (FLC). The results showed that the maximum displacement of the center of the bridge main span reduced 33% and 48% respectively by adding passive and active MTMD systems. The RMS of displacement reduced 37% and 47%, the velocity 36% and 42% and also the base shear in pylons, 27% and 47%, respectively by adding passive and active systems, in the best cases.