• 제목/요약/키워드: Smart textiles

검색결과 180건 처리시간 0.025초

스크린 프린팅을 이용한 PEDOT:PSS/AgNW 기반 전기전도성 스마트 텍스타일의 제조 및 신호전달선으로의 적용 (Fabrication of PEDOT:PSS/AgNW-based Electrically Conductive Smart Textiles Using the Screen Printing Method and its Application to Signal Transmission Lines)

  • 강희은;이유진;조길수
    • 한국의류산업학회지
    • /
    • 제23권4호
    • /
    • pp.527-535
    • /
    • 2021
  • In this study, electroconductive textiles were developed by screen-printing technology using a complex solution of PEDOT:PSS/AgNW on a polylactic acid nanofiber web. A performance evaluation was then conducted to utilize this electroconductive textile as a signal transmission line. To obtain highly conductive electroconductive textiles, this study sought to determine the optimal mixing ratio of PEDOT:PSS/AgNW. Sheet resistance was measured to evaluate the electrical properties of electroconductive textiles, Finite element-scanning electron microscopy images were then used to examine surface properties, and Fourier transform-infrared analysis was performed to evaluate chemical properties. The signal waveform characteristics of the electroconductive textile were observed using a signal generator and an oscilloscope. Radio-frequency characteristics were then evaluated to confirm frequency range, and bending tests were conducted to evaluate durability. The signal transmission lines produced in this study had a sheet resistance value of 3.30 ?/sq, and signal transmission performance was evaluated to observe that the input value of the voltage was nearly identical to the output value. In addition, S21 analysis confirmed that it was available in the frequency domain up to 35 MHz. The performances of the transmission lines were maintained after 100, 200, 500, and 1,000 repeated bending tests, and sufficient durability was confirmed.

스마트웨어 수용의도 연구: 확장된 UTAUT 모형을 중심으로 (Research on Intention to Adopt Smart Wear: Based on Extended UTAUT Model)

  • 성희원;성정환
    • 패션비즈니스
    • /
    • 제19권2호
    • /
    • pp.69-84
    • /
    • 2015
  • The objective of this study is to investigate the intention to adopt smart wear, based on extended UTAUT model. We examined the effects of performance expectancy (PE), effort expectancy (EE), hedonic motivation (HE), social influence (SI), facilitating conditions (FC), and price value (PV) on the intended adoption of smart watch and smart shoes, respectively. In addition, moderating effects of gender, age, and innovation resistance were examined. An online survey was conducted, comprised of 2030 consumers who were aware of smart watch or smart shoes. In total, 393 responses were analyzed. About 50.4% were male, and 44.8% were in their 20's. An exploratory factor analysis generated five factors - PE & HM, EE, SI, FC, and PV- which were employed as independent variables in the multiple regression models. PE & HM, PV, and SI influenced on the intention to use both smart devices. FC showed the significant effect only on the intention to adopt the smart watch. In terms of gender differences, SI and PV were the important predictors of the intention to adopt the smart watch in the female group only. With respect to age difference, SI was very effective in explaining the intention of individuals in their 30's to adopt smart wear. Among the low innovation resistance group, SI was significant predictor, while PE & HE and PV were significant among the high resistance group. The findings provide useful information about the possibility of the adoption of smart wear, and new insight into market segmentation.

CPB(Cold-Pad-Batch) 염색 패더롤 고무에서 화학적 노화로 인한 가속 수명예측 (Accelerated Life Prediction of CPB(cold-pad-batch) Padder Roll Rubber to Chemical Degradation)

  • 임지영;남창우;이우성
    • 한국염색가공학회지
    • /
    • 제29권3호
    • /
    • pp.155-161
    • /
    • 2017
  • In CPB(Cold-Pad-Batch) dyeing, the rubber of the padder roll is influenced by the heat, chemical and mechanical influences and thus aging of the padder roll rubber occurs. This study presents an accelerated thermal aging test of the CPB padder roll rubber with strong alkali conditions. Using Arrhenius formula of the various property values for the various aging temperatures($80^{\circ}C$, $90^{\circ}C$, $100^{\circ}C$) of the padder roll, the accelerated life predictions could be calculated. The threshold value of the property was set at different values. The hardness was set at the point where 5% degradation occurs based on the actual use conditions, and the tensile strength was set at the point where 50% degradation occurs based on the general life prediction standards. From the results of the different physical properties at differing temperatures, the Arrhenius plot could be obtained. Through the usage of the Arrhenius Equation, significant duration expectation could be predicted, and the chemical aging behavior of the CPB padder roll could be found at the arbitrary and actual temperatures.

유니버설 패션에 기반한 시니어 심박측정 의류 디자인 연구 (Research on Heart Rate Sensing Clothing Design for Seniors Based on Universal Fashion)

  • 구혜란;전동진;이주현
    • 한국의류산업학회지
    • /
    • 제19권6호
    • /
    • pp.692-700
    • /
    • 2017
  • The number of elderly citizens has risen in Korea and resulted in an aging society. Correspondingly, the social interest in the aging population has escalated immensely; however, research or product development on the quality of life for seniors has shortcomings. Healthcare smart clothing is required to help the elderly with changes and weaknesses that follow aging; however, there is unfortunately insufficient amounts available. This study explores the feasibilities of smart clothing for seniors based on a universal design. Based on previous research, we analyzed the universal design theory, body shape characteristics and design requirements for seniors, and heart rate measurement method. The design is different according to body shape and body shape is different between sex, age, and body race; therefore, subjects were limited to 70-74 year old Korean males in this study. This study proposes a guideline for heart rate sensing clothing that satisfies the 'universal design' aspects as well as the functionality of heart sensing, senior's physical characteristics and needs. It has broadened the range of smart clothing, which was once limited to the younger generation and provided a foundation for the development of specialized smart clothing for seniors.

아두이노를 활용한 사용자 참여형 스마트 포토닉 의류 프로토타입 설계 (Designing User Participation Smart Photonic Clothing Prototype Using Arduino)

  • 안미화;임호선
    • 한국의류산업학회지
    • /
    • 제22권1호
    • /
    • pp.55-65
    • /
    • 2020
  • Smart photonic clothing integrates light emitting technology inside and outside of the garment and integrates it as a fashion product. It expresses digital color that radiates light outside the body that expands the functionality of the clothing as well as makes new and various attempts visually. It is also is gradually expanding into a new area of fashion. LED, one of the digital color output devices, is a light emitting device that is suitable for presenting consumer customized designs in that the patterns and colors of clothes can be modified as desired by utilizing computer technology such as program coding. LED technology that can realize various digital colors is actively applied in various industrial design fields, but there are few previous studies on smart clothes using LED color in Korean fashion fields. Therefore, this study develops a prototype of a customized LED smart photonic garment that allows the user to directly participate in the color implementation of clothing and select a digital color suitable for the desired function. The LED module was designed to be detachable from clothing and made using a 256-pixel LED matrix. Various coding patterns of the LED were designed using the coding change of Arduino program.

혼합학습(Blended Learning)을 적용한 디자인 수업 실증사례 연구 -팀 프로젝트와 스마트디바이스 앱 기반 학습을 중심으로- (A Case Study on Design Classes using Blended Learning -Focused on Team Project and Smart Device App-based Learning-)

  • 김진희;김혜균
    • 한국의류학회지
    • /
    • 제45권2호
    • /
    • pp.271-284
    • /
    • 2021
  • This study presents the educational utility of blended learning by analyzing the effectiveness of learning after class by blending team project learning and smart device app-based learning methods. Qualitative analysis and survey analysis were conducted and the results were as follows. First, team project activities based on task resolution were conducted freely through detailed activities such as sharing roles, planning meetings, and coordinating opinions. Team activities were carried out with respect and consideration, team member bonding, and a sense of responsibility. Second, the smart device app is recognized as a medium for work and communication, and fast feedback has been made, making it highly impactful on classroom activities. Third, in terms of learning satisfaction, most learners showed an interest in the course and were satisfied with the project results. The smart device app was used as a learning and communication medium for personal and team activities and was analyzed as a blended method applicable to classes that conduct practical activities as an efficient tool to further activate project activities.

웨어러블 디바이스를 위한 은 나노와이어 코팅 전도사 개발 (The Development of Electro-Conductive Threads Coated with Silver Nanowires for Use in Wearable Devices)

  • 김지민;윤창상
    • 한국의류학회지
    • /
    • 제45권4호
    • /
    • pp.674-684
    • /
    • 2021
  • Recent advances in electronic technology have engendered a need for research on the use of smart materials in clothing. Electro-conductive fibers are expected to be a crucial element of wearable devices. Therefore, in this study, we have attempted to develop electro-conductive threads and cables using silver nanowires. Based on the characteristics of silver nanowire, in which electro-conductivity can be imparted via heat treatment, we prepared conductive threads by coating nylon yarn with silver nanowires and curing at temperatures of 140℃, 150℃, and 160℃. Conductive threads cured at 140℃ had the highest conductivity, followed by threads cured at 160℃ and 150℃ respectively. The order of the electrical conductivity of the threads after tensile testing was consistent with the original order of the conductivity of the threads. When we evaluated the sensing performance of electro-conductive cables fabricated from these threads, the cables manufactured from threads cured at 140℃ and 160℃ were found to function normally within temperature and humidity sensors. All the cables operated normally in illuminance and electrocardiogram sensors. Thus, we believe that threads made of silver nanowire have sufficient electrical conductivity to be utilized as wearable sensors.

베이비부머 집단을 위한 보행 운동용 스마트 워킹웨어의 디자인 방향 연구 (A Research on Design Direction for the Smart Walking Wear to Support Walking Exercise for the Baby Boomer Group)

  • 반현성;황수정;김신혜;이주현
    • 감성과학
    • /
    • 제21권3호
    • /
    • pp.129-140
    • /
    • 2018
  • 본 연구는 고령에 접어들고 있는 베이비부머 집단의 보행 운동용 스마트 스포츠웨어 및 스포츠 애플리케이션에 대한 수용태도를 분석하고 베이비부머 집단의 특성에 맞는 스마트 워킹웨어 및 연동 애플리케이션 개발방향을 제시하는 것이다. 연구 방법은 조사연구로 설문지법을 사용하였으며 측정 도구는 기존 스마트 스포츠웨어와 스포츠 애플리케이션의 디자인, 기능성 사용성에 대한 수용태도를 묻는 문항 등으로 구성되었으며, 조사대상은 50세 이상 65세 미만의 베이비부머 집단을 대상으로 진행됐다. 연구결과를 요약하면 다음과 같다. 베이비부머 소비자들은 스마트 스포츠웨어의 기능 및 성능안전성에 대해 긍정적으로 인식하나 관리 및 내구성에 대한 우려가 있어 스마트 스포츠웨어의 내구성 및 편의성 개선방향 및 사후 처리에 대한 고려가 필요하다. 스포츠 애플리케이션의 경우 새로운 정보를 얻을 수 있는 교육적인 기능으로 인식하며, 인지용이성 및 접근성에 대해 젊은 세대에 비하여 어려움을 느끼는 것으로 나타났다. 본 연구 결과를 바탕으로 베이비부머 소비자의 보행운동용 워킹웨어의 디자인 및 기획방향으로는 '일반 스포츠웨어 디자인의 일상적 디자인', '소비자의 선호가 반영된 기능', '관리의 편의성 및 내구성을 높인 디자인' 등을, 보행운동용 애플리케이션의 기획 방향으로는 '쉬운 스포츠 애플리케이션 구성', '교육적 운동 콘텐츠 구성' 등을 제시하였다.

신호 감지성이 향상된 반려견용 무선 심전도 측정 의복 개발 (Development of Wireless ECG Clothing for Dogs with Improved Signal Detection)

  • 김소영;이옥경;권은순;이예진;민승남;이희란
    • 한국의류학회지
    • /
    • 제46권5호
    • /
    • pp.760-771
    • /
    • 2022
  • This study sought to develop clothing for a companion animal that can provide stable ECG measurements. A pattern for the smart clothing of a companion dog was manufactured using the replica method to select a location and method that best suited the stable measurement of ECG and improved the clothing's fitness. The smart clothing was developed as the following three types: strap type, top type, and combined top and vest type with a detachable wireless ECG monitor. The detection abilities of these were observed using the PQRST rate taken after ECG measurements while the three companion dogs were tested while resting and moving. The results revealed that apart from using an electrode, applying a gel pad is the most effective way to achieve stable ECG measurements, and the central chest region is more reliable than the left armpit for providing steady readings. The combined top and vest type showed the highest average ECG PQRST detection number, meaning that the ECG signal measurement was steady. These results may contribute to the measurement of ECG in smartwear for U-Healthcare to measure other biometric data of a companion dog.

PEDOT 기상중합 원단을 이용한 멀티 레이어 압력 센서 개발 (Development of Multi-layer Pressure Sensor using PEDOT Vapor Phase Polymerization)

  • 임승주;배종혁;장성진;임지영;박근혜;고재훈
    • 센서학회지
    • /
    • 제27권3호
    • /
    • pp.186-191
    • /
    • 2018
  • Smart textile industries have been precipitously developed and extended to electronic textiles and wearable devices in recent years. In particular, owing to an increasingly aging society, the elderly healthcare field has been highlighted in the smart device industries, and pressure sensors can be utilized in various elderly healthcare products such as flooring, mattress, and vital-sign measuring devices. Furthermore, elderly healthcare products need to be more lightweight and flexible. To fulfill those needs, textile-based pressure sensors is considered to be an attractive solution. In this research, to apply a textile to the second layer using a pressure sensing device, a novel type of conductive textile was fabricated using vapor phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT). Vapor phase polymerization is suitable for preparing the conductive textile because the reaction can be controlled simply under various conditions and does not need high-temperature processing. The morphology of the obtained PEDOT-conductive textile was observed through the Field Emission Scanning Electron Microscope (FESEM). Moreover, the resistance was measured using an ohmmeter and was confirmed to be adjustable to various resistance ranges depending on the concentration of the oxidant solution and polymerization conditions. A 3-layer 81-point multi-pressure sensor was fabricated using the PEDOT-conductive textile prepared herein. A 3D-viewer program was developed to evaluate the sensitivity and multi-pressure recognition of the textile-based multi-pressure sensor. Finally, we confirmed the possibility that PEDOT-conductive textiles could be utilized by pressure sensors.