• Title/Summary/Keyword: Smart sensor nodes

Search Result 127, Processing Time 0.03 seconds

Channel Selection Method of Wireless Sensor Network Nodes for avoiding Interference in 2.4Ghz ISM(Industrial, Scientific, Medical) Band (2.4Ghz ISM(Industrial Scientific Medical) 밴드에서 간섭을 회피하기 위한 무선 센서 노드의 채널 선택 방법)

  • Kim, Su Min;Kuem, Dong Hyun;Kim, Kyung Hoon;Oh, Il;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.4
    • /
    • pp.109-116
    • /
    • 2014
  • In recent, ISM (Industrial Scientific Medical) band that is 2.4GHz band authorized free of charge is being widely used for smart phone, notebook computer, printer and portable multimedia devices. Accordingly, studies have been continuously conducted on the possibility of coexistence among nodes using ISM band. In particular, the interference of IEEE 802.11b based Wi-Fi device using overlapping channel during communication among IEEE 802.15.4 based wireless sensor nodes suitable for low-power, low-speed communication using ISM band causes serious network performance deterioration of wireless sensor networks. This paper examined a method of identifying channel status to avoid interference among wireless communication devices using IEEE 802.11b (Wi-Fi) and other ISM bands during communication among IEEE 802.15.4 based wireless sensor network nodes in ISM band. To identify channels occupied by Wi-Fi traffic, various studies are being conducted that use the RSSI (Received Signal Strength Indicator) value of interference signal obtained through ED (Energy Detection) feature that is one of IEEE 802.15.4 transmitter characteristics. This paper examines an algorithm that identifies the possibility of using more accurate channel by mixing utilization of interference signal and RSSI mean value of interference signal by wireless sensor network nodes. In addition, it verifies such algorithm by using OPNET Network verification simulator.

Cluster-Based Mobile Sink Location Management Scheme for Solar-Powered Wireless Sensor Networks

  • Oh, Eomji;Kang, Minjae;Yoon, Ikjune;Noh, Dong Kun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.9
    • /
    • pp.33-40
    • /
    • 2017
  • In this paper, we propose a sink-location management and data-routing scheme to effectively support the mobile sink in solar-powered WSN. Battery-based wireless sensor networks (WSNs) have a limited lifetime due to their limited energy, but solar energy-based WSNs can be supplied with energy periodically and can operate forever. On the other hand, introduction of mobile sink in WSNs can solve some energy unbalance problem between sink-neighboring nodes and outer nodes which is one of the major challenges in WSNs. However, there is a problem that additional energy should be consumed to notify each sensor node of the location of the randomly moving mobile sink. In the proposed scheme, one of the nodes that harvests enough energy in each cluster are selected as the cluster head, and the location information of the mobile sink is shared only among the cluster heads, thereby reducing the location management overhead. In addition, the overhead for setting the routing path can be removed by transferring data in the opposite direction to the path where the sink-position information is transferred among the heads. Lastly, the access node is introduced to transmit data to the sink more reliably when the sink moves frequently.

Structural health monitoring of a cable-stayed bridge using smart sensor technology: deployment and evaluation

  • Jang, Shinae;Jo, Hongki;Cho, Soojin;Mechitov, Kirill;Rice, Jennifer A.;Sim, Sung-Han;Jung, Hyung-Jo;Yun, Chung-Bangm;Spencer, Billie F. Jr.;Agha, Gul
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.439-459
    • /
    • 2010
  • Structural health monitoring (SHM) of civil infrastructure using wireless smart sensor networks (WSSNs) has received significant public attention in recent years. The benefits of WSSNs are that they are low-cost, easy to install, and provide effective data management via on-board computation. This paper reports on the deployment and evaluation of a state-of-the-art WSSN on the new Jindo Bridge, a cable-stayed bridge in South Korea with a 344-m main span and two 70-m side spans. The central components of the WSSN deployment are the Imote2 smart sensor platforms, a custom-designed multimetric sensor boards, base stations, and software provided by the Illinois Structural Health Monitoring Project (ISHMP) Services Toolsuite. In total, 70 sensor nodes and two base stations have been deployed to monitor the bridge using an autonomous SHM application with excessive wind and vibration triggering the system to initiate monitoring. Additionally, the performance of the system is evaluated in terms of hardware durability, software stability, power consumption and energy harvesting capabilities. The Jindo Bridge SHM system constitutes the largest deployment of wireless smart sensors for civil infrastructure monitoring to date. This deployment demonstrates the strong potential of WSSNs for monitoring of large scale civil infrastructure.

An Improved Two-Factor Mutual Authentication Scheme with Key Agreement in Wireless Sensor Networks

  • Li, Jiping;Ding, Yaoming;Xiong, Zenggang;Liu, Shouyin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5556-5573
    • /
    • 2017
  • As a main component of Internet of Things (IoTs), the wireless sensor networks (WSNs) have been widely applied to various areas, including environment monitoring, health monitoring of human body, farming, commercial manufacture, reconnaissance mission in military, and calamity alert etc. Meanwhile, the privacy concerns also arise when the users are required to get the real-time data from the sensor nodes directly. To solve this problem, several user authentication and key agreement schemes with a smart card and a password have been proposed in the past years. However, these schemes are vulnerable to some attacks such as offline password guessing attack, user impersonation attack by using attacker's own smart card, sensor node impersonation attack and gateway node bypassing attack. In this paper, we propose an improved scheme which can resist a wide variety of attacks in WSNs. Cryptanalysis and performance analysis show that our scheme can solve the weaknesses of previously proposed schemes and enhance security requirements while maintaining low computational cost.

Electric Field Energy Harvesting Powered Wireless Sensors for Smart Grid

  • Chang, Keun-Su;Kang, Sung-Muk;Park, Kyung-Jin;Shin, Seung-Hwan;Kim, Hyeong-Seok;Kim, Ho-Seong
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.75-80
    • /
    • 2012
  • In this paper, a new energy harvesting technology using stray electric field of an electric power line is presented. It is found that energy can be harvested and stored in the storage capacitor that is connected to a cylindrical aluminum foil wrapped around a commercial insulated 220 V power line. The average current flowing into 47 ${\mu}F$ storage capacitor is about 4.53 ${\mu}A$ with 60 cm long cylindrical aluminum foil, and it is possible to operate wireless sensor node to transmit RF data every 42 seconds. The harvested average power is about 47 ${\mu}W$ in this case. Since the energy can be harvested without removing insulating sheath, it is believed that the proposed harvesting technology can be applied to power the sensor nodes in wireless ubiquitous sensor network and smart grid system.

Efficient Mobile Sink Location Management Scheme Using Multi-Ring in Solar-Powered Wireless Sensor Networks

  • Kim, Hyeok;Kang, Minjae;Yoon, Ikjune;Noh, Dong Kun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.10
    • /
    • pp.55-62
    • /
    • 2017
  • In this paper, we proposes a multi-ring based mobile sink location scheme for solar-powered wireless sensor network (WSN). The proposed scheme maintains the multi-rings in which nodes keep the current location of sink node. With the help of nodes in multi-rings, each node can locate the sink node efficiently with low-overhead. Moreover, because our scheme utilizes only surplus energy of a node, it can maintain multiple rings without degrading any performance of each node. Experimental results show that the proposed scheme shows much better latency and scalability with lower energy-consumption than the existing single-ring based scheme.

Reinforcement Learning-based Duty Cycle Interval Control in Wireless Sensor Networks

  • Akter, Shathee;Yoon, Seokhoon
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.19-26
    • /
    • 2018
  • One of the distinct features of Wireless Sensor Networks (WSNs) is duty cycling mechanism, which is used to conserve energy and extend the network lifetime. Large duty cycle interval introduces lower energy consumption, meanwhile longer end-to-end (E2E) delay. In this paper, we introduce an energy consumption minimization problem for duty-cycled WSNs. We have applied Q-learning algorithm to obtain the maximum duty cycle interval which supports various delay requirements and given Delay Success ratio (DSR) i.e. the required probability of packets arriving at the sink before given delay bound. Our approach only requires sink to compute Q-leaning which makes it practical to implement. Nodes in the different group have the different duty cycle interval in our proposed method and nodes don't need to know the information of the neighboring node. Performance metrics show that our proposed scheme outperforms existing algorithms in terms of energy efficiency while assuring the required delay bound and DSR.

IoT and Wireless Sensor Network Monitoring for Campus Security (캠퍼스 보안을 위한 IoT 및 무선 센서 네트워크 모니터링)

  • Mateen, Ahmed;Zhu, Qingsheng;Afsar, Salman;Usman, Muhammad
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.33-41
    • /
    • 2018
  • The idea of the Internet of Things as a platform on the Smart Campus has become increasingly popular. It requires an infrastructure consisting of communication networks, sensor nodes and gateways to connect to the Internet. Each sensor node is responsible for gathering data from the environment. This document outlines a network of wireless sensors on the Internet for the application of Smart Campus monitoring. Wireless sensor network Monitoring have become a complete solution to using a low power implementation and integrated systems. The numerous restrictions however result from the low communication range, the limited computing power, the lack of availability of the network protocol, the lack of programming security and the security failures in the areas of confidentiality, integrity and availability. A new security technique and its functionality for WSNM nodes developed. Development in the research of a secure network and suggestions for avoiding denial of service (DOS) and complexity attacks. These systems if properly implemented can provide an energy efficiency mechanism through pre-allocation and a new key from key management models with a secure routine algorithm.

Analysis of Lifetime Estmation Model of Motion Detection Sensor Nodes in Smart House (첨단주택 내에서 움직임 감지 센서 노드의 수명 예측 모델 분석)

  • Lee, Min-Goo;Park, Yong-Guk;Jung, Kyung-Kwon;Yoo, Jun-Jae;Sung, Ha-Gyeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.860-863
    • /
    • 2010
  • Wireless sensor networks consist of small, autonomous devices with wireless networking capabilities. In order to further increase the applicability in real world applications, minimizing energy consumption is one of the most critical issues. Therefore, accurate energy model is required for the evaluation of wireless sensor networks. In this paper, we analyze the energy consumption for wireless sensor networks. To estimate the lifetime of sensor node, we have measured the energy characteristics of sensor node based on Telosb platforms running TinyOS. Based on the proposed model, the estimated lifetime of a battery powered sensor node can use about 6.925 months for 10 times motion detection per hour.

  • PDF

Channel Grade Method of multi-mode mobile device for avoiding Interference at WPAN (WPAN에서 간섭을 피하기 위한 멀티모드 단말기 채널등급 방법)

  • Jung, Sungwon;Kum, Donghyun;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.91-98
    • /
    • 2015
  • There is a new evolution in technological advancement taking place called the Internet of Things (IoT), The IoT enables physical world objects in our surrounding to be connected to the Internet. ISM (Industrial Scientific Medical) band that is 2.4GHz band authorized free of charge is being widely used for smart devices. Accordingly studies have been continuously conducted on the possibility of coexistence among nodes using ISM band. In particular, the interference of IEEE 802.11b based Wi-Fi devices using overlapping channel during communication among IEEE 802.15.4 based wireless sensor nodes suitable for low-power, low-speed communication using ISM band. Because serious network performance deterioration of wireless sensor networks. In this paper, we will propose an algorithm that identifies the possibility of using more accurate channels by mixing utilization of interference signal and RSSI (Received Signal Strength Indicator) Min/Max/Activity of Interference signal by wireless sensor nodes. In addition, it will verify our algorithm by using OPNET Network verification simulator.