• Title/Summary/Keyword: Smart rural

Search Result 246, Processing Time 0.024 seconds

Comparison of Social, Economic, and Environmental Impacts depending on Cultivation Methods - Based on Agricultural Income Survey Data and Smart Farm Survey Reports - (농산물 재배 방식에 따른 사회, 경제, 환경 영향 비교 - 농산물 소득조사 자료와 스마트팜 실태조사 보고서를 기반으로 -)

  • Lee, Jimin;Kim, Taegon
    • Journal of Korean Society of Rural Planning
    • /
    • v.29 no.4
    • /
    • pp.127-135
    • /
    • 2023
  • This study examined the impact of changes in agricultural production methods on society, the economy, and the environment. While traditional open-field farming relied heavily on natural conditions, modern approaches, including greenhouse and smart farming, have emerged to mitigate the effects of climate and seasonal variations. Facility horticulture has been on the rise since the 1990s, and recently, there has been a growing interest in smart farms due to reasons such as climate change adaptation and food security. We compared open-field spinach and greenhouse spinach using agricultural income survey data, and we also compared greenhouse tomato cultivation with smart farming tomato cultivation, utilizing data from the smart farm survey reports. The economic results showed that greenhouse spinach increased yield by 25.8% but experienced a 29% decrease in income due to equipment depreciation. In the case of tomato production in smart farms, both yield and income increased by 36-39% and 34-46%, respectively. In terms of environmental impact, we also compared fertilizer and energy usage. It was found that greenhouse spinach used 29% less fertilizer but 14% more energy compared to open-field spinach. Smart farming for tomatoes saw a negligible decrease in electricity and fuel costs. Regarding the social impact, greenhouse spinach reduced labor hours by 31%, and the introduction of smart farming for tomatoes led to an average 11% reduction in labor hours. This reduction is expected to have a positive effect on sustainable farming. In conclusion, the transition from open-field to greenhouse cultivation and from greenhouse cultivation to smart farming appears to yield positive effects on the economy, environment, and society. Particularly, the reduction in labor hours is beneficial and could potentially contribute to an increase in rural populations.

Opportunities and challenges in the development of smart cities in Tanzania

  • Mwakitalima, Isaka J.;Rizwan, Mohammad;Kumar, Narendra
    • Advances in Energy Research
    • /
    • v.7 no.2
    • /
    • pp.135-146
    • /
    • 2020
  • In developing countries especially in African continent, rapid population growth in cities is a major concern. Majority of governments in Africa have made more effort to develop urban areas as compared to the rural ones. Social and economic activities are more concentrated in urban areas. This is a pushing factor for the rapid population growth in cities as many people, especially young generation, tend to migrate from rural to urban. This growth leads to excessive exploitation of natural resources, environmental degradation and increased pressure on social services. Rapid increased population acts as an encouragement to construct smart cities for achieving needs for present and future generations. Tanzania as one of the developing countries in Africa has taken initiatives in establishing smart cities. The aim of this study therefore, is to examine opportunities and challenges in the development of Smart cities in Tanzania with a case study of Mbeya city. In addition, conceptualization about development of smart cities is proposed to prioritize the planning of smart grid among other smart city infrastructure systems. Conclusively, Mbeya city has a full potential of many strengths and opportunities for successful development as a smart city.

A Study on the Effect of Perceived Usefulness Factors of Smart Farm on the Rural Entrepreneurial Intention (스마트팜의 지각된 유용성 요인이 농촌창업의도에 미치는 영향에 관한 연구)

  • Ahn, Mun Hyoung;Heo, Chul-Moo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.15 no.4
    • /
    • pp.161-173
    • /
    • 2020
  • As ICT convergence technology has spread and applied to various industrial fields and society in general, interest in rural entrepreneurship using smart farm as a means for solving many pending problems in agriculture is increasing. In this context, this study is to look at the influential factors in terms of perceived usefulness associated with the rural entrepreneurial intention using smart farm and suggest a proposal for spreading smart farms. The subjects were 296 general adults over 20 years old who were selected by simple random sampling method. The research method was exploratory factor analysis and multiple regression analysis using IBM SPSS 22.0. The perceived usefulness of smart farm, which are availability, reliability and economic efficiency were selected as independent variables to analyze the influential factors on rural entrepreneurial intention using smart farm and the moderating effect of personal innovation was observed. As a result, reliability and economic efficiency have a positive(+) influence on rural entrepreneurial intention using smart farm. And personal innovation moderates the relationship between the availability, reliability of smart farm and rural entrepreneurial intention using smart farm. The results of this study have significance in that we devised and empirically revealed factors affecting rural entrepreneurship intentions from the perspective of perceived usefulness of smart farms, away from studies of general entrepreneurship intention factors such as internal personal characteristics and external environmental factors. The implications of the study are expected to be utilized at the seeking direction of policy for potential entrepreneur using smart farm, the training and consulting in actual field of smart farm.

Quality Control on Water-level Data in Agricultural Reservoirs Considering Filtering Methods (필터링 기법을 이용한 농업용저수지 수위자료의 품질관리 방안)

  • Kim, Kyung-hwan;Choi, Gyu-hoon;Jung, Hyoung-mo;Joo, Donghyuk;Na, Ra;Choi, Eun-hyuk;Kwon, Jae-Hwan;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.83-93
    • /
    • 2021
  • Agricultural reservoirs are important facilities for storing or managing water for the purpose of securing agricultural water, creating and expanding agricultural production bases, and using them to increase agricultural production. In particular, the Korea Rural Community Corporation (KRC) manages agricultural reservoirs scattered across the country, and officially recognizes and distributes hydrological data to increase their public utilization and aims to improve the value of water resources. Data on the water level of agricultural reservoirs are important. However, errors such as missing values and outliners limit utilization of the data in various fields of research and industry. Therefore, water quality data measures should be devised to increase reliability. this study categorized different error types and looked at automatic correction methods to enhance the reliability of the vast hydrological data. In addition, the water level data corrected from errors were compared to the reference hydrologic data through expert judgment in accordance with the quality control procedure, and the most appropriate measures were verified. As KRC manages more agricultural reservoirs than any other institution, the proposed method of efficient and automatic water level data correction in this study is expected to increase the availability and reliability of the hydrological data.

A Study on the Detection of Solar Power Plant for High-Resolution Aerial Imagery Using YOLO v2 (YOLO v2를 이용한 고해상도 항공영상에서의 태양광발전소 탐지 방법 연구)

  • Kim, Hayoung;Na, Ra;Joo, Donghyuk;Choi, Gyuhoon;Oh, Yun-Gyeong
    • Journal of Korean Society of Rural Planning
    • /
    • v.28 no.2
    • /
    • pp.87-96
    • /
    • 2022
  • As part of strengthening energy security and responding to climate change, the government has promoted various renewable energy measures to increase the development of renewable energy facilities. As a result, small-scale solar installations in rural areas have increased rapidly. The number of complaints from local residents is increasing. Therefore, in this study, deep learning technology is applied to high-resolution aerial images on the internet to detect solar power plants installed in rural areas to determine whether or not solar power plants are installed. Specifically, I examined the solar facility detector generated by training the YOLO(You Only Look Once) v2 object detector and looked at its usability. As a result, about 800 pieces of training data showed a high object detection rate of 93%. By constructing such an object detection model, it is expected that it can be utilized for land use monitoring in rural areas, and it can be utilized as a spatial data construction plan for rural areas using technology for detecting small-scale agricultural facilities.

Data-Based Model Approach to Predict Internal Air Temperature in a Mechanically-Ventilated Broiler House (데이터 기반 모델에 의한 강제환기식 육계사 내 기온 변화 예측)

  • Choi, Lak-yeong;Chae, Yeonghyun;Lee, Se-yeon;Park, Jinseon;Hong, Se-woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.5
    • /
    • pp.27-39
    • /
    • 2022
  • The smart farm is recognized as a solution for future farmers having positive effects on the sustainability of the poultry industry. Intelligent microclimate control can be a key technology for broiler production which is extremely vulnerable to abnormal indoor air temperatures. Furthermore, better control of indoor microclimate can be achieved by accurate prediction of indoor air temperature. This study developed predictive models for internal air temperature in a mechanically-ventilated broiler house based on the data measured during three rearing periods, which were different in seasonal climate and ventilation operation. Three machine learning models and a mechanistic model based on thermal energy balance were used for the prediction. The results indicated that the all models gave good predictions for 1-minute future air temperature showing the coefficient of determination greater than 0.99 and the root-mean-square-error smaller than 0.306℃. However, for 1-hour future air temperature, only the mechanistic model showed good accuracy with the coefficient of determination of 0.934 and the root-mean-square-error of 0.841℃. Since the mechanistic model was based on the mathematical descriptions of the heat transfer processes that occurred in the broiler house, it showed better prediction performances compared to the black-box machine learning models. Therefore, it was proven to be useful for intelligent microclimate control which would be developed in future studies.

Statistical analysis of Production Efficiency on the Strawberry Farms Using Smart Farming (스마트팜 도입 딸기농가의 생산효율성 통계분석)

  • Choi, Don-Woo;Lim, Cheong-Ryong
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.3
    • /
    • pp.707-716
    • /
    • 2018
  • Purpose: This study aims to analyze the management performance and production efficiency of strawberry farmers who introduced smart farming, one of the primary symbols of the fourth industrial revolution in the agricultural sector. Methods: We conducted an empirical survey of strawberry farms using smart farming and analyzed production efficiency using DEA method. Results: First, difficulties for strawberry farmers introducing smart farming included time and money spent on parts replacement and additional costs due to compatibility problems with existing facilities after the adoption. Second, strawberry farmers using smart farming increased their total income by producing higher yield and improving quality thanks to the competent growth management. Third, the analysis of production efficiencies before and after smart farming found improvement in technical efficiency, pure technical efficiency, and scale efficiency. But, the gaps in technical and scale efficiencies among the farms widened. Conclusion: Based on the results above, following policy suggestions are offered. First, an environment control technology suitable for strawberry farming needs to be developed. Second, the smart farming technology needs to be standardized by the government. Third, new smart farm models need to be developed to accommodate to the facilities and environment in Korea through collecting big data including high-quality data on the environment, growth, and yield. Fourth, continuing education needs to be provided to narrow the gap in smart farming technology among strawberry farmers.

A Estimation Study on Water Integration Management Model using Water-Energy-Food-Carbon Nexus - Focused on Yeongsan River - (물-에너지-식량-탄소 넥서스를 이용한 통합물관리 모델 평가 연구 - 영산강 수계를 중심으로 -)

  • Na, Ra;Park, Jin-hyeon;Joo, Donghyuk;Kim, Hayoung;Yoo, Seung-Hwan;Oh, Chang-Jo;Lee, Sang-hyun;Oh, Bu-Yeong;Hur, Seung-oh
    • Journal of Korean Society of Rural Planning
    • /
    • v.29 no.1
    • /
    • pp.37-49
    • /
    • 2023
  • Active attention and effort are needed to develop an integrated water management system in response to climate change. In this study, it proposed models for cross-use of agricultural water and river maintenance water using sewage treatment water as an integrated water management system for the Yeongsan River. The impact of the integrated water management models was assessed by applying the concept of Nexus, which is being presented worldwide for sustainable resource management. The target year was set for 2030 and quantitatively analyzed water, energy, land use and carbon emissions and resource availability index by integrated water management models was calculated by applying maximum usable amount by resource. An integrated water management system evaluation model using the Nexus concept developed in this study can play a role that can be viewed in a variety of ways: security and environmental impact assessment of other resources. The results of this research will be used as a foundation for the field of in the establishment of a policy decision support system to evaluate various security policies, as we analyzed changes in other factors according to changes in individual components, taking into account the associations between water, energy, food, and carbon resources. In future studies, additional sub-models need to be built that can be applied flexibly to changes in the future timing of the inter-resource relationship components.

Development of Snow Load Sensor and Analysis of Warning Criterion for Heavy Snow Disaster Prevention Alarm System in Plastic Greenhouse (비닐온실 폭설 방재 예·경보 시스템을 위한 설하중 센서 개발과 적설 경보 기준 분석)

  • Kim, Dongsu;Jeong, Youngjoon;Lee, Sang-ik;Lee, Jonghyuk;Hwang, Kyuhong;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.2
    • /
    • pp.75-84
    • /
    • 2021
  • As the weather changes become frequent, weather disasters are increasing, causing more damage to plastic greenhouses. Among the damage caused by various disasters, damage by snow to the greenhouse takes a relatively long time, so if an alarm system is properly prepared, the damage can be reduced. Existing greenhouse design standards and snow warning systems are based on snow depth. However, even in the same depth, the load on the greenhouse varies depending on meteorological characteristics and snow density. Therefore, this study aims to secure the structural safety of greenhouses by developing sensors that can directly measure snow loads, and analysing the warning criteria for load using a stochastic model. Markov chain was applied to estimate the failure probability of various types of greenhouses in various regions, which let users actively cope with heavy snowfall by selecting an appropriate time to respond. Although it was hard to predict the precise snow depth or amounts, it could successfully assess the risk of structures by directly detecting the snow load using the developed sensor.

Analysis of the Emergency Water Supply Capacity in Agricultural Reservoirs Using K-HAS and Ratio Correction Factors (K-HAS와 비율보정 계수를 이용한 농업용 저수지의 비상연계 용수공급 가능량 분석)

  • Kim, Hayoung;Lee, Sang-Hyun;Na, Ra;Joo, Donghyuk;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.2
    • /
    • pp.59-71
    • /
    • 2023
  • As the frequency of drought increases due to climate change, water scarcity in agriculture would be a main issue. However, it seems difficult to solve the water scarcity by securing alternative water sources. The aim of this study is to analyze optimal water supply capacity of agricultural reservoir for emergency operation connecting reservoirs and dams. First, we simulated the water storage of agricultural reservoir playing the role emergency water supplier to other water facility such as dams and other reservoirs. In particular, the results of simulation of water storage through K-HAS model was calibrated using the optimization process based on ratio correction factors of outflow and inflow. Finally, the optimal amount of water supply securing water supply reliability in emergency interconnection operation was analyzed. The results of this study showed that Janchi reservoir could supply 12.8 thousand m3/day maintaining 90 % water supply reliability. The result of this study could suggest the standard for connecting water facilities as emergency water supply.