• Title/Summary/Keyword: Smart metering

Search Result 107, Processing Time 0.02 seconds

Performance Analysis of Wireless Communication Networks for Smart Metering Implemented with Channel Coding Adopted Multi-Purpose Wireless Communication Chip (오류 정정 부호를 사용하는 범용 무선 통신 칩으로 구현된 스마트 미터링 무선 네트워크 시스템 성능 분석)

  • Wang, Hanho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.321-326
    • /
    • 2015
  • Smart metering is one of the most implementable internet-of-thing service. In order to implement the smart metering, a wireless communication network should be newly designed and evaluated so as to satisfy quality-of-service of smart metering. In this paper, we consider a wireless network for the smart metering implemented with multi-purpose wireless chips and channel coding-functioned micro controllers. Especially, channel coding is newly adopted to improve successful frame transmission probability. Based on the successful frame transmission probability, average transmission delay and delay violation probability are analyzed. Using the analytical results, service coverage expansion is evaluated. Through the delay analysis, service feasibility can be verified. According to our results, channel coding needs not to be utilized to improve the delay performance if the smart metering service coverage is several tens of meters. However, if more coverage is required, chanel coding adoption definitely reduces the delay time and improve the service feasibility.

Attacks, Vulnerabilities and Security Requirements in Smart Metering Networks

  • Hafiz Abdullah, Muhammad Daniel;Hanapi, Zurina Mohd;Zukarnain, Zuriati Ahmad;Mohamed, Mohamad Afendee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1493-1515
    • /
    • 2015
  • A smart meter is one of the core components in Advanced Metering Infrastructure (AMI) that is responsible for providing effective control and monitor of electrical energy consumptions. The multifunction tasks that a smart meter carries out such as facilitating two-way communication between utility providers and consumers, managing metering data, delivering anomalies reports, analyzing fault and power quality, simply show that there are huge amount of data exchange in smart metering networks (SMNs). These data are prone to security threats due to high dependability of SMNs on Internet-based communication, which is highly insecure. Therefore, there is a need to identify all possible security threats over this network and propose suitable countermeasures for securing the communication between smart meters and utility provider office. This paper studies the architecture of the smart grid communication networks, focuses on smart metering networks and discusses how such networks can be vulnerable to security attacks. This paper also presents current mechanisms that have been used to secure the smart metering networks from specific type of attacks in SMNs. Moreover, we highlight several open issues related to the security and privacy of SMNs which we anticipate could serve as baseline for future research directions.

Anomaly detection of smart metering system for power management with battery storage system/electric vehicle

  • Sangkeum Lee;Sarvar Hussain Nengroo;Hojun Jin;Yoonmee Doh;Chungho Lee;Taewook Heo;Dongsoo Har
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.650-665
    • /
    • 2023
  • A novel smart metering technique capable of anomaly detection was proposed for real-time home power management system. Smart meter data generated in real-time were obtained from 900 households of single apartments. To detect outliers and missing values in smart meter data, a deep learning model, the autoencoder, consisting of a graph convolutional network and bidirectional long short-term memory network, was applied to the smart metering technique. Power management based on the smart metering technique was executed by multi-objective optimization in the presence of a battery storage system and an electric vehicle. The results of the power management employing the proposed smart metering technique indicate a reduction in electricity cost and amount of power supplied by the grid compared to the results of power management without anomaly detection.

An Empirical Research on the IoT Basis Gas AMI Platform and Smart Metering Services (IoT 기반 가스 원격검침(AMI) 플랫폼과 서비스의 실증 연구)

  • Lee, Seungwoo;Lee, Sangshin;Song, Min-hwan;Kwon, Youngmin
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.3
    • /
    • pp.1-10
    • /
    • 2020
  • This paper describes the development of a smart advanced metering infrastructure(AMI) architecture and services for using smart metering in gas industry. A general gas AMI system is composed of a smart gas meter, IoT network, the AMI platform, and an operation management system with security functions. The proposed gas AMI platform supports two-way communication between smart metering devices and AMI services and is applied by oneM2M standard to support interoperability between various types of metering devices and heterogeneous IoT networks. To demonstrating AMI system with the proposed platform, we installed about 2,900 smart gas meters in real environments and operated AMI systems for one year. We verified that about 94% of gas meters are normally worked and AMI services are stably operated without error or malfunction.

A Study on De-Identification of Metering Data for Smart Grid Personal Security in Cloud Environment

  • Lee, Donghyeok;Park, Namje
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.263-270
    • /
    • 2017
  • Various security threats exist in the smart grid environment due to the fact that information and communication technology are grafted onto an existing power grid. In particular, smart metering data exposes a variety of information such as users' life patterns and devices in use, and thereby serious infringement on personal information may occur. Therefore, we are in a situation where a de-identification algorithm suitable for metering data is required. Hence, this paper proposes a new de-identification method for metering data. The proposed method processes time information and numerical information as de-identification data, respectively, so that pattern information cannot be analyzed by the data. In addition, such a method has an advantage that a query such as a direct range search and aggregation processing in a database can be performed even in a de-identified state for statistical processing and availability.

A Study of an Application Scheme for Smart Meter and Value Added Services Based on Korean Environment (한국형 스마트 전력량계 부가서비스 적용방안 연구)

  • Kim, Seok-Gon;Lee, Han-Byul;Lee, Young-Joo;Choi, Yong-Sung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.106-111
    • /
    • 2010
  • Electronic watt hour meters(WHM) for high pressure running in domestic were installed to the digital type meter and ones for low pressure are expected to complete within several years. Domestic power metering technology is being beyond a simple framework with an electronic type and is rapidly evolving to intelligent smart metering systems in conjunction with promotion of a national smart grid project. Major policy outlook of the world's major power company regarding Intelligent metering is the application of the fare structure diversification and is the improvement of level of service to customers. In addition, electric power companies should focus on the cost reduction and the improvement of management efficiency through an efficient operation of distribution facility. In this paper, we are about to make an observation of the additional services technology development trend of the overseas smart meter and to have a view of value-added services(VAS) system of smart meter suitable for the domestic environment based on the technology development of VAS utilizing electronic watt hour meter performed by recent research projects.

Cognitive Beamforming Based Smart Metering for Coexistence with Wireless Local Area Networks

  • Lee, Keonkook;Chae, Chan-Byoung;Sung, Tae-Kyung;Kang, Joonhyuk
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.619-628
    • /
    • 2012
  • The ZigBee network has been considered to monitor electricity usage of home appliances in the smart grid network. ZigBee, however, may suffer from a coexistence problem with wireless local area network (WLAN). In this paper, to resolve the coexistence problem between ZigBee network and WLAN, we propose a new protocol constructing a cognitive smart grid network for supporting monitoring of home appliances. In the proposed protocol, home appliances first estimates the transmission timing and channel information of WLAN by reading request to send/clear to send (RTS/CTS) frames of WLAN. Next, based on the estimated information, home appliances transmit a data at the same time as WLAN transmission. To manage the interference between WLAN and smart grid network, we propose a cognitive beamforming algorithm. The beamforming algorithm is designed to guaranteeing zero interference to WLAN while satisfying a required rate for smart metering. We also propose an energy efficient rate adaptation algorithm. By slowing down the transmission rate while satisfying an imperceptible impact of quality of service (QoS) of the receiver, the home appliance can significantly save transmit power. Numerical results show that the proposed multiple antenna technique provides reliable communications for smart metering with reduced power comparing to the simple transmission technique.

The Device Allocation Method for Energy Efficiency in Advanced Metering Infrastructures (첨단 검침 인프라에서 에너지 효율을 위한 기기 할당 방안)

  • Jung, Sungmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.33-39
    • /
    • 2020
  • A smart grid is a next-generation power grid that can improve energy efficiency by applying information and communication technology to the general power grid. The smart grid makes it possible to exchange information about electricity production and consumption between electricity providers and consumers in real-time. Advanced metering infrastructure (AMI) is the core technology of the smart grid. The AMI provides two-way communication by installing a modem in an existing digital meter and typically include smart meters, data collection units, and meter data management systems. Because the AMI requires data collection units to control multiple smart meters, it is essential to ensure network availability under heavy network loads. If the load on the work done by the data collection unit is high, it is necessary to allocation new data collection units to ensure availability and improve energy efficiency. In this paper, we discuss the allocation scheme of data collection units for the energy efficiency of the AMI.

A Case Study of the Impact of a Cybersecurity Breach on a Smart Grid Based on an AMI Attack Scenario (AMI 공격 시나리오에 기반한 스마트그리드 보안피해비용 산정 사례)

  • Jun, Hyo-Jung;Kim, Tae-Sung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.3
    • /
    • pp.809-820
    • /
    • 2016
  • The smart grid, a new open platform, is a core application for facilitating a creative economy in the era of the Internet of Things (IoT). Advanced Metering Infrastructure (AMI) is one of the components of the smart grid and a two-way communications infrastructure between the main utility operator and customer. The smart meter records consumption of electrical energy and communicates that information back to the utility for monitoring and billing. This paper investigates the impact of a cybersecurity attack on the smart meter. We analyze the cost to the smart grid in the case of a smart meter attack by authorized users based on a high risk scenario from NESCOR. Our findings could be used by policy makers and utility operators to create investment decision-making models for smart grid security.