• Title/Summary/Keyword: Smart lighting

Search Result 183, Processing Time 0.03 seconds

Algorithm for Judging Anomalies Using Sliding Window to Reproduce the Color Temperature Cycle of Natural Light (자연광의 색온도 주기 재현을 위한 슬라이딩 윈도우 기반 이상치 판정 알고리즘)

  • Jeon, Geon Woo;Oh, Seung Taek;Lim, Jae Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.1
    • /
    • pp.30-39
    • /
    • 2021
  • Research in the field of health lighting has continued to advance to reproduce the color temperature of natural light which periodically changes. However, most of this research could only reproduce a uniform circadian color temperature of natural light, therefore failing to realize the characteristics of the circadian cycle of color temperature difference by latitude and longitude. To reproduce the color temperature of natural light on which the characteristics of a region are reflected, the collection technology of real-time characteristics of natural light is needed. If the color temperatures which are not within a periodical pattern due to climate changes, etc., are measured, it will be difficult to judge the occurrence (presence) of the anomalies and to reproduce the circadian cycle of the color temperature of natural light. Therefore, this study proposes an algorithm for judging the anomalies in real time based on the sliding window to reproduce the color temperature of natural light. First, the natural light characteristics DB collected through the on-site measurement were analyzed, the differential values at a one-minute interval were calculated and examined, and then representative color temperature circadian patterns by solar terms were drawn. The anomalies were then detected by the application of the sliding window that calculated the deviation of the color temperature for the measured color temperature data set, which was collected through RGB sensors, while moving along the time sequence. In addition, the presence of anomalies was verified through the comparison study between the detection results and the representative circadian cycle of the color temperature by solar term. The judgment method for the anomalies from the measured color temperature of natural light was proposed for the first time, confirming that the proposed method was capable of detecting the anomalies with an average accuracy of 94.6%.

3D Vision Implementation for Robotic Handling System of Automotive Parts (자동차 부품의 로봇 처리 시스템을 위한 3D 비전 구현)

  • Nam, Ji Hun;Yang, Won Ock;Park, Su Hyeon;Kim, Nam Guk;Song, Chul Ki;Lee, Ho Seong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.60-69
    • /
    • 2022
  • To keep pace with Industry 4.0, it is imperative for companies to redesign their working environments by adopting robotic automation systems. Automation lines are facilitating the latest cutting-edge technologies, such as 3D vision and industrial robots, to outdo competitors by reducing costs. Considering the nature of the manufacturing industry, a time-saving workflow and smooth linkwork between processes is vital. At Dellics, without any additional new installation in the automation lines, only a few improvements to the working process could raise productivity. Three requirements are the development of gripping technology by utilizing a 3D vision system for the recognition of the material shape and location, research on lighting projectors to target long distances and high illumination, and testing of algorithms/software to improve measurement accuracy and identify products. With some of the functional requisites mentioned above, improved robotic automation systems should provide an improved working environment to maximize overall production efficiency. In this article, the ways in which such a system can become the groundwork for establishing an unmanned working infrastructure are discussed.

Synthetic data augmentation for pixel-wise steel fatigue crack identification using fully convolutional networks

  • Zhai, Guanghao;Narazaki, Yasutaka;Wang, Shuo;Shajihan, Shaik Althaf V.;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.237-250
    • /
    • 2022
  • Structural health monitoring (SHM) plays an important role in ensuring the safety and functionality of critical civil infrastructure. In recent years, numerous researchers have conducted studies to develop computer vision and machine learning techniques for SHM purposes, offering the potential to reduce the laborious nature and improve the effectiveness of field inspections. However, high-quality vision data from various types of damaged structures is relatively difficult to obtain, because of the rare occurrence of damaged structures. The lack of data is particularly acute for fatigue crack in steel bridge girder. As a result, the lack of data for training purposes is one of the main issues that hinders wider application of these powerful techniques for SHM. To address this problem, the use of synthetic data is proposed in this article to augment real-world datasets used for training neural networks that can identify fatigue cracks in steel structures. First, random textures representing the surface of steel structures with fatigue cracks are created and mapped onto a 3D graphics model. Subsequently, this model is used to generate synthetic images for various lighting conditions and camera angles. A fully convolutional network is then trained for two cases: (1) using only real-word data, and (2) using both synthetic and real-word data. By employing synthetic data augmentation in the training process, the crack identification performance of the neural network for the test dataset is seen to improve from 35% to 40% and 49% to 62% for intersection over union (IoU) and precision, respectively, demonstrating the efficacy of the proposed approach.

Dynamic characteristics monitoring of wind turbine blades based on improved YOLOv5 deep learning model

  • W.H. Zhao;W.R. Li;M.H. Yang;N. Hong;Y.F. Du
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.469-483
    • /
    • 2023
  • The dynamic characteristics of wind turbine blades are usually monitored by contact sensors with the disadvantages of high cost, difficult installation, easy damage to the structure, and difficult signal transmission. In view of the above problems, based on computer vision technology and the improved YOLOv5 (You Only Look Once v5) deep learning model, a non-contact dynamic characteristic monitoring method for wind turbine blade is proposed. First, the original YOLOv5l model of the CSP (Cross Stage Partial) structure is improved by introducing the CSP2_2 structure, which reduce the number of residual components to better the network training speed. On this basis, combined with the Deep sort algorithm, the accuracy of structural displacement monitoring is mended. Secondly, for the disadvantage that the deep learning sample dataset is difficult to collect, the blender software is used to model the wind turbine structure with conditions, illuminations and other practical engineering similar environments changed. In addition, incorporated with the image expansion technology, a modeling-based dataset augmentation method is proposed. Finally, the feasibility of the proposed algorithm is verified by experiments followed by the analytical procedure about the influence of YOLOv5 models, lighting conditions and angles on the recognition results. The results show that the improved YOLOv5 deep learning model not only perform well compared with many other YOLOv5 models, but also has high accuracy in vibration monitoring in different environments. The method can accurately identify the dynamic characteristics of wind turbine blades, and therefore can provide a reference for evaluating the condition of wind turbine blades.

Inactivation influences on Escherichia coli DS5α by irradiation with 405 nm violet-light

  • Young-Sun Kim;Mun-Jin Choi;Dae-Young Lee;Sang-Ook Kang;Geung-Joo Lee
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.417-425
    • /
    • 2023
  • Because an irradiation of 405 nm violet light could have a strong energy, it was used to be sterilized against various microbes in the indoor air condition or fresh food. Escherichia coli is a representative bio-pollutant in the indoor air-borne bacteria, and a hygienic microbe in the horticultural food. This study evaluated the inactivation influences on E. coli DS5α after exposure to 405 nm violet-light (VL) by investigating irradiating time, and the vertical and horizonal distance from light source. The illumination of 405 nm VL was inversely proportional to the distance from the VL source. E. coli DS5α on nutrient agar (NA) was inactivated approximately 50% more than the control when irradiated at 65 cm from 405 nm VL for 3 hours. When compared to the control, E. coli DS5α was inactivated approximately 50% within 70 cm from 405 nm VL for 3 hours. As it was irradiated for 3 hours 70 cm away from 405 nm VL, the horizonal distance from the point was negatively correlated to the inactivation of E. coli DS5α. These results indicated that the inactivation of E. coli DS5α grown on NA medium needs to be irradiated with 405 nm within 70 cm from the light source for 3 hours.

Improving the Cyclic Stability of Electrochromic Mirrors Composed of Gel Electrolyte (겔 전해질로 구성된 전기변색 거울의 내구성 향상)

  • Ji-Hyeong Lee;Kwang-Mo Kang;Sang Bum Lee;Yoon-Chae Nah
    • Korean Journal of Materials Research
    • /
    • v.34 no.8
    • /
    • pp.400-407
    • /
    • 2024
  • The reversible metal electrodeposition (RME) process is used to prepare electrochromic mirrors with reflective-transparent optical states, by depositing metal particles on transparent conductive substrates. These RME based devices can be used in smart windows to regulate indoor temperatures and light levels, serving dual purposes as lighting elements. Commercialization efforts are focused on achieving large-scale production, long-term durability, and a memory effect that maintains coloration without applied voltage. Enhancing durability has received particular attention, leading to the development of electrochromic mirrors that employ gel electrolytes, which are expected to reduce electrolyte leakage and improve mechanical stability compared to traditional liquid electrolyte devices. The gel electrolytes offer the additional advantage of various colors, by controlling the metal particle size and enabling smoother, denser formations. In this study, we investigated improving the durability of RME devices by adding polyvinyl butyral (PVB) to the liquid electrolyte and optimizing the concentration of PVB. Incorporating 10 % PVB resulted in excellent interfacial properties and superior electrochromic stability, with 92.6 % retention after 1,000 cycles.

Light ID and HMD-AR Based Interactive Exhibition Design for Jeonju Hanok Village Immersive 3D View (전주 한옥마을의 실감 3D View를 위한 Light ID 및 HMD-AR 기반 인터렉티브 전시 설계)

  • Min, Byung-Jun;Mariappan, Vinayagam;Cha, Jae-Sang;Kim, Dae-Young;Cho, Ju-Phil
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.414-420
    • /
    • 2018
  • The digital convergence looking for new ways to engage visitors by superimposing virtual content on projection over the real world captured media contents. This paper propose the Light ID based interactive 3D immersive exhibition things view using HMD AR technology. This approach does not required to add any additional infrastructure to be built-in to enable service and uses the installed Lighting or displays devices in the exhibit area. In this approach, the Light ID can be used as a Location Identifier and communication medium to access the content unlike the QR Tag which supports provide the download information through web interface. This utilize the advantages of camera based optical wireless communication (OWC) to receive the media content on smart device to deliver immersive 3D content visualization using AR. The proposed exhibition method is emulated on GALAXY S8 smart phone and the visual performance is evaluated for Jeonju Hanok Village. The experimental results shows that the proposed method can give immersive 3D view for exhibit things in real-time.

A Study on Smart Road Stud System with RF Wireless Control (RF 방식의 무선 제어 기능을 내장한 스마트 도로 표지병 시스템에 대한 연구)

  • Kim, Hyung-Sik;Jeon, Joon-Hyeok;Kim, Hee-Jun;Ahn, Joon-Seon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.282-289
    • /
    • 2019
  • Reflective and solar LED road studs are being used as a way of securing visibility for road environments. Road markers have various advantages and disadvantages in terms of versatility, efficiency, simplicity and visibility as individual products of reflective type and solar LED. However, in addition to the above, it is possible to prevent secondary accident after accident, It has a common drawback that it is difficult to have. In this paper, we propose a road stud system incorporating a wireless control function using RF - based communication with existing solar LED road studs and a system for controlling them. The proposed system is called the smart road stud system and it can control the equipment through the central control unit and the relay unit connected to the central control room by incorporating the RF communication function in the existing solar LED road stud. In addition, since it is possible to control the lighting method, color, etc. according to the road condition, it is possible to provide the driver with the state of the road to perform the function for preventing the second accident after the accident. It also adds features that minimize the ongoing power consumption of LED and RF communications. In order to verify the validity of the proposed system, prototypes were produced and it was confirmed that it is possible to act as a university for prevention of accident after accident by linking with other traffic system besides accident prevention function by securing existing visibility.

Development of Convergence LED Streetlight and Speed Bump Using Solar Cell and Piezoelectric Element (태양광과 압전소자를 이용한 융복합 LED 발광 과속방지턱 겸용 가로등 개발)

  • Nahm, Eui-Seok;Cho, Han-Jin
    • Journal of Digital Convergence
    • /
    • v.14 no.5
    • /
    • pp.325-331
    • /
    • 2016
  • In driving at evening or night, we are not able to recognize the speed bump and so stop suddenly. It could result in accidents. And also, we have a restriction of street light installation in farm road because it could be harmful to the crops and driver could not recognize the walking people. It needs to develop the speed bump with light and streetlight to be non harmful to the crops. So, we develop both the speed bump and streetlight with LED which could be non harmful to the crops and be increased recognition of walking people in farm road. For LED lighting power, we use the solar cells, and piezoelectric elements. It has automatic on/off according to power saving rates without illumination sensor. Minimization of circuit elements and design of minimum resisters and low power LED was used for power saving in assuring 3-days.

Enterprise Human Resource Management using Hybrid Recognition Technique (하이브리드 인식 기술을 이용한 전사적 인적자원관리)

  • Han, Jung-Soo;Lee, Jeong-Heon;Kim, Gui-Jung
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.333-338
    • /
    • 2012
  • Human resource management is bringing the various changes with the IT technology. In particular, if HRM is non-scientific method such as group management, physical plant, working hours constraints, personal contacts, etc, the current enterprise human resources management(e-HRM) appeared in the individual dimension management, virtual workspace (for example: smart work center, home work, etc.), working time flexibility and elasticity, computer-based statistical data and the scientific method of analysis and management has been a big difference in the sense. Therefore, depending on changes in the environment, companies have introduced a variety of techniques as RFID card, fingerprint time & attendance systems in order to build more efficient and strategic human resource management system. In this paper, time and attendance, access control management system was developed using multi camera for 2D and 3D face recognition technology-based for efficient enterprise human resource management. We had an issue with existing 2D-style face-recognition technology for lighting and the attitude, and got more than 90% recognition rate against the poor readability. In addition, 3D face recognition has computational complexities, so we could improve hybrid video recognition and the speed using 3D and 2D in parallel.