• Title/Summary/Keyword: Smart control

Search Result 3,373, Processing Time 0.028 seconds

Active Vibration Control of Smart Hull Structure Using MFC Actuators (MFC 작동기를 이용한 스마트 Hull 구조물의 능동 진동 제어)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1408-1415
    • /
    • 2005
  • Active vibration control of smart hull structure using Macro Fiber Composite (MFC) actuator is performed. Finite element modeling is used to obtain governing equations of motion and boundary effects of end-capped smart hull structure. Equivalent interdigitated electrode model is developed to obtain piezoelectric couplings of MFC actuator. Modal analysis is conducted to investigate the dynamic characteristics of the hull structure, and compared to the results of experimental investigation. MFC actuators are attached where the maximum control performance can be obtained. Active controller based on Linear Quadratic Gaussian (LQG) theory is designed to suppress vibration of smart hull structure. It is observed that closed loop damping can be improved with suitable weighting factors in the developed LQG controller and structural vibration is controlled effectively.

Dynamic Modeling and Vibration Control of Smart Hull Structure (스마트 Hull 구조물의 동적 모델링 및 능동 진동 제어)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.650-655
    • /
    • 2006
  • Dynamic modeling and active vibration control of smart hull structure using Macro Fiber Composite (MFC) actuator is conducted. Finite element modeling is used to obtain equations of motion and boundary effects of smart hull structure. Modal analysis is carried out to investigate the dynamic characteristics of the smart hull structure, and compared to the results of experimental investigation. Negative velocity feedback control algorithm is employed to investigate active damping of hull structure. It is observed that non-resonant vibration of hull structure is suppressed effectively by the MFC actuators.

  • PDF

Dynamic Modeling and Vibration Control of Smart Hull Structure (스마트 Hull 구조물의 동적 모델링 및 능동 진동 제어)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.840-847
    • /
    • 2006
  • Dynamic modelingand active vibration control of smart hull structure using Macro Fiber Composite (MFC) actuators are conducted. Finite element modeling is used to obtain equations of motion and boundary effects of smart hull structure. Modal analysis is carried out to investigate the dynamic characteristics of the smart hull structure, and compared to the results of experimental investigation. Negative velocity feedback control algorithm is employed to investigate active damping of hull structure. It is observed that non-resonant vibration of hull structure is suppressed effectively by the MFC actuators.

Active Vibration Control of Smart Hull Structure Using MFC Actuators (MFC 작동기를 이용한 스마트 Hull 구조물의 능동 진동 제어)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.217-222
    • /
    • 2005
  • Active vibration control of smart hull structure using Macro Fiber Composite (MFC) actuator is performed. Finite element modeling is used to obtain governing equations of motion and boundary effects of end-capped smart hull structure. Equivalent interdigitated electrode model is developed to obtain piezoelectric couplings of MFC actuator. Modal analysis is conducted to investigate the dynamic characteristics of the hull structure, and compared to the results of experimental investigation. MFC actuators are attached where the maximum control performance can be obtained. Active controller based on Linear Quadratic Gaussian (LQG) theory is designed to suppress vibration of smart hull structure. It is observed that closed loop damping can be improved with suitable weighting factors in the developed LQG controller and structural vibration is controlled effectively.

  • PDF

The Natural Way of Gestures for Interacting with Smart TV

  • Choi, Jin-Hae;Hong, Ji-Young
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.567-575
    • /
    • 2012
  • Objective: The aim of this study is to get an optimal mental model by investigating user's natural behavior for controlling smart TV by mid-air gestures and to identify which factor is most important for controlling behavior. Background: A lot of TV companies are trying to find simple controlling method for complex smart TV. Although plenty of gesture studies proposing they could get possible alternatives to resolve this pain-point, however, there is no fitted gesture work for smart TV market. So it is needed to find optimal gestures for it. Method: (1) Eliciting core control scene by in-house study. (2) Observe and analyse 20 users' natural behavior as types of hand-held devices and control scene. We also made taxonomies for gestures. Results: Users' are trying to do more manipulative gestures than symbolic gestures when they try to continuous control. Conclusion: The most natural way to control smart TV on the remote with gestures is give user a mental model grabbing and manipulating virtual objects in the mid-air. Application: The results of this work might help to make gesture interaction guidelines for smart TV.

The Relationships among Smart phone Use Motivations, Addiction, and Self-control in Nursing students (일 대학 간호학과 학생의 스마트폰 이용 동기, 중독과 자기 통제력의 관계)

  • Cho, Meekyung
    • Journal of Digital Convergence
    • /
    • v.12 no.5
    • /
    • pp.311-323
    • /
    • 2014
  • The purpose of this study was to identify the relationships among smart phone use motivations, addiction, and self-control in nursing students. Data were collected from June 10-18, 2013. Smart phone use motivations and addiction showed significant differences according to sex, record. Smart phone high-risk users got high-score in use motivations especially entertainment/leisure, service, and functionality, and low-score in self-control. The factors affecting smart phone addiction were record, tolerance, abstinence, difficulty of daily living, and aim for virtual world which accounted for 88.2%. Also factors affecting addiction were entertainment/leisure, flaunt/trend which accounted for 12.9%. In conclusion, smart phone use motivations was correlated positively with addiction, while addiction was correlated negatively with self-control. Therefore more positive and desirable ways of smart phone use, and plans for improvement of self-control should be studied.

3D-based equivalent model of SMART control rod drive mechanism using dynamic condensation method

  • Ahn, Kwanghyun;Lee, Kang-Heon;Lee, Jae-Seon;Chang, Seongmin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1109-1114
    • /
    • 2022
  • The SMART (System-integrated Modular Advanced ReacTor) is an integral-type small modular reactor developed by KAERI (Korea Atomic Energy Research Institute). This paper discusses the feasibility and applicability of a 3D-based equivalent model using dynamic condensation method for seismic analysis of a SMART control rod drive mechanism. The equivalent model is utilized for complicated seismic analysis during the design of the SMART. While the 1D-based beam-mass equivalent model is widely used in the nuclear industry for its calculation efficiency, the 3D-based equivalent model is suggested for the seismic analysis of SMART to enhance the analysis accuracy of the 1D-based equivalent model while maintaining its analysis efficiency. To verify the suggested model, acceleration response spectra from seismic analysis based on the 3D-based equivalent model are compared to those from the 1D-based beam-mass equivalent model and experiments. The accuracy and efficiency of the dynamic condensation method are investigated by comparison to analysis results based on the conventional modeling methodology used for seismic analysis.

A Study on the Implementation of Raspberry Pi Based Educational Smart Farm

  • Min-jeong Koo
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.458-463
    • /
    • 2023
  • This study presents a paper on the implementation of a Raspberry Pi-based educational smart farm system. It confirms that in a real smart farm environment, the control of temperature, humidity, soil moisture, and light intensity can be smoothly managed. It also includes remote monitoring and control of sensor information through a web service. Additionally, information about intruders collected by the Pi camera is transmitted to the administrator. Although the cost of existing smart farms varies depending on the location, material, and type of installation, it costs 400 million won for polytunnel and 1.5 billion won for glass greenhouses when constructing 0.5ha (1,500 pyeong) on average. Nevertheless, among the problems of smart farms, there are lax locks, malfunctions to automation, and errors in smart farm sensors (power problems, etc.). We believe that this study can protect crops at low cost if it is complementarily used to improve the security and reliability of expensive smart farms. The cost of using this study is about 100,000 won, so it can be used inexpensively even when applied to the area. In addition, in the case of plant cultivators, cultivators with remote control functions are sold for more than 1 million won, so they can be used as low-cost plant cultivators.

DC Injection Control for Grid-Connected Single-Phase Inverters Based on Virtual Capacitor

  • Wang, Wei;Wang, Ping;Bei, Taizhou;Cai, Mengmeng
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1338-1347
    • /
    • 2015
  • DC injection is a critical issue in transformerless grid-connected inverters. DC injection control based on virtual capacitor has the advantages of low cost, low loss, high accuracy and easy implementation. In this paper, the principle of DC injection control based on virtual capacitor was analyzed. In addition, the applicable conditions, working process, steady state error and advantages were also discussed in detail. The design of the control parameters based on virtual capacitor was proposed in a grid-connected inverter with LCL filter. The robustness of the control parameters was also discussed. Simulation and experimental results verify the validity of the analysis and demonstrate that this research has a certain value in engineering applications.

Modeling and fast output sampling feedback control of a smart Timoshenko cantilever beam

  • Manjunath, T. C.;Bandyopadhyay, B.
    • Smart Structures and Systems
    • /
    • v.1 no.3
    • /
    • pp.283-308
    • /
    • 2005
  • This paper features about the modeling and design of a fast output sampling feedback controller for a smart Timoshenko beam system for a SISO case by considering the first 3 vibratory modes. The beam structure is modeled in state space form using FEM technique and the Timoshenko beam theory by dividing the beam into 4 finite elements and placing the piezoelectric sensor/actuator at one location as a collocated pair, i.e., as surface mounted sensor/actuator, say, at FE position 2. State space models are developed for various aspect ratios by considering the shear effects and the axial displacements. The effects of changing the aspect ratio on the master structure is observed and the performance of the designed FOS controller on the beam system is evaluated for vibration control.