• 제목/요약/키워드: Smart control

검색결과 3,373건 처리시간 0.034초

The Impact of Privacy Control on Users' Intention to Use Smart Home Internet of Things (IoT) Services

  • Kim, Mingyung;Choi, Bo Reum
    • Asia Marketing Journal
    • /
    • 제24권1호
    • /
    • pp.29-38
    • /
    • 2022
  • Despite the diverse benefits of smart home Internet of Things (IoT) services, the biggest obstacle to the actual usage of those services is concern about privacy. However, little research has investigated the impact of privacy control on users' intention to use smart home services. Based on communication privacy management theory and privacy calculus theory, this study investigates how privacy control options affect users' perceived benefits and costs and how those perceptions affect individuals' intentions to use smart home services by conducting an experiment. Our results showed that smart home privacy control options decreased perceived benefits and increased perceived costs. The perceived benefits and costs significantly affected the intention to use smart home security services. More intriguingly, the effect of perceived benefit was found to be stronger than that of the expected cost. This research contributes to the field of IoT and smart home research and provides practitioners with notable guidelines.

다목적 유전자알고리즘을 이용한 첨단기술산업 시설물의 스마트 미진동제어 (Smart Microvibration Control of High-Tech Industry Facilities using Multi-Objective Genetic Algorithm)

  • 김현수;강주원;김영식
    • 한국공간구조학회논문집
    • /
    • 제13권2호
    • /
    • pp.37-45
    • /
    • 2013
  • Reduction of microvibration is regarded as important in high-technology facilities with high precision equipments. In this paper, smart control technology is used to improve the microvibration control performance. Mr damper is used to make a smart base isolation system amd fuzzy logic control algorithm is employed to appropriately control the MR damper. In order to develop optimal fuzzy control algorithm, a multi-objective genetic algorithm is used in this study. As an excitation, a train-induced ground acceleration is used for time history analysis and three-story example building structure is employed. Microvibration control performance of passive and smart base isolation systems have been investigated in this study. Numerical simulation results show that the multi-objective genetic algorithm can provide optimal fuzzy logic controllers for smart base isolation system and the smart control system can effectively reduce microvibration of a high-technology facility subjected to train-induced excitation.

스마트 폰 기반 홈 자동제어시스템 설계 및 구현 (A Home Automation system based on Smart phone)

  • 장용재;박경욱;이성근
    • 한국전자통신학회논문지
    • /
    • 제6권4호
    • /
    • pp.589-594
    • /
    • 2011
  • 스마트 폰 또는 홈 네트워크 기술은 지속적으로 부가가치를 창출할 수 있는 기술로, 삶의 질을 한층 더 높게 만들어 준다. 본 논문에서는 스마트 폰을 통해 스마트 홈을 제어 하는 시스템을 설계 및 구현하였다. 구현된 스마트 홈 시스템은 홈 노드 구조물, 원격 스마트 응용 시스템, 홈 서버 제어 시스템으로 구성된다. 홈 노드 구조물은 침입 감지, 가스 검출 및 밸브 제어, 도어 락, 자동커튼, 환풍기 제어 및 On/Off 제어 모듈로 구성되어 있으며 모듈들은 홈 서버에 의해서 제어 된다. 홈 서버는 사용자가 직접 제어할 수 있는 사용자 인터페이스와 스마트 폰을 이용하여 원격 제어할 수 있는 원격 인터페이스를 제공함으로써 언제 어디서나 편리하게 홈 자동제어시스템을 제어할 수 있다.

Smart pattern recognition of structural systems

  • Hassan, Maguid H.M.
    • Smart Structures and Systems
    • /
    • 제6권1호
    • /
    • pp.39-56
    • /
    • 2010
  • Structural Control relies, with a great deal, on the ability of the control algorithm to identify the current state of the system, at any given point in time. When such algorithms are designed to perform in a smart manner, several smart technologies/devices are called upon to perform tasks that involve pattern recognition and control. Smart pattern recognition is proposed to replace/enhance traditional state identification techniques, which require the extensive manipulation of intricate mathematical equations. Smart pattern recognition techniques attempt to emulate the behavior of the human brain when performing abstract pattern identification. Since these techniques are largely heuristic in nature, it is reasonable to ensure their reliability under real life situations. In this paper, a neural network pattern recognition scheme is explored. The pattern identification of three structural systems is considered. The first is a single bay three-story frame. Both the second and the third models are variations on benchmark problems, previously published for control strategy evaluation purposes. A Neural Network was developed and trained to identify the deformed shape of structural systems under earthquake excitation. The network was trained, for each individual model system, then tested under the effect of a different set of earthquake records. The proposed smart pattern identification scheme is considered an integral component of a Smart Structural System. The Reliability assessment of such component represents an important stage in the evaluation of an overall reliability measure of Smart Structural Systems. Several studies are currently underway aiming at the identification of a reliability measure for such smart pattern recognition technique.

Deep Q-Network를 이용한 준능동 제어알고리즘 개발 (Development of Semi-Active Control Algorithm Using Deep Q-Network)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제21권1호
    • /
    • pp.79-86
    • /
    • 2021
  • Control performance of a smart tuned mass damper (TMD) mainly depends on control algorithms. A lot of control strategies have been proposed for semi-active control devices. Recently, machine learning begins to be applied to development of vibration control algorithm. In this study, a reinforcement learning among machine learning techniques was employed to develop a semi-active control algorithm for a smart TMD. The smart TMD was composed of magnetorheological damper in this study. For this purpose, an 11-story building structure with a smart TMD was selected to construct a reinforcement learning environment. A time history analysis of the example structure subject to earthquake excitation was conducted in the reinforcement learning procedure. Deep Q-network (DQN) among various reinforcement learning algorithms was used to make a learning agent. The command voltage sent to the MR damper is determined by the action produced by the DQN. Parametric studies on hyper-parameters of DQN were performed by numerical simulations. After appropriate training iteration of the DQN model with proper hyper-parameters, the DQN model for control of seismic responses of the example structure with smart TMD was developed. The developed DQN model can effectively control smart TMD to reduce seismic responses of the example structure.

Implementation of Smart Control System based on Intelligent Dimming with LEDs

  • Lee, Geum-Boon
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권5호
    • /
    • pp.127-133
    • /
    • 2016
  • In this paper, an intelligent dimming control system is designed and implemented with the human visual response function using CDS sensor, PIR sensor and temperature sensor, etc. The proposed system is designed to detect a moving object by PIR sensor and to control the LED dimming considering the human visual response. Also, the dimming of LED light can modulate on the app, and simultaneously control dimming in real-world environments with smart phone app. A high-temperature warning or a fire hazard information is transmitted to user's smart phone according to sensor values and Data graph are provided as part of data visualization. Connecting the hardware controller, the proposed intelligent smart dimming control system is expected to contribute to the power reduction interior LED, smart grid building and saving home combining with internet of things.

원형 덕트 내에서 스마트 폼을 이용한 능동 소음 제어 (Active Noise Control in a Circular Duct Using Smart Foam)

  • 한제헌;김표재;강연준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.641-645
    • /
    • 2001
  • In this paper, it is discussed that active noise control in a circular duct using smart foam. Firstly, it is demonstrated that the potential of the conventional smart foam, proposed by Fuller, for active noise control in a duct. Conventional smart foam is not applicable to active noise control in a duct having flow. Thus, this paper presents a ring-type smart foam as an alternative. The ring-type smart foam consists of polyurethane acoustic foam of lining shape and PVDF film embedded in the foam. The embedded PVDF element acts as an actuator to reduce noise at lower frequencies and the foam absorbs noise at higher frequencies. A filtered-x LMS controller is used to minimize the signal from the error microphone. Experiments are executed to reduce broadband and tonal noise.

  • PDF

풍응답과 지진응답의 다중제어를 위한 스마트 아웃리거 댐퍼의 최적설계 (Optimal Design of Smart Outrigger Damper for Multiple Control of Wind and Seismic Responses)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제16권3호
    • /
    • pp.79-88
    • /
    • 2016
  • An outrigger damper system has been proposed to reduce dynamic responses of tall buildings. In previous studies, an outrigger damper system was optimally designed to decrease a wind-induced or earthquake-induced dynamic response. When an outrigger damper system is optimally designed for wind excitation, its control performance for seismic excitation deteriorates. Therefore, a smart outrigger damper system is proposed in this study to make a control system that can simultaneously reduce both wind and seismic responses. A smart outrigger system is made up of MR (Magnetorheological) dampers. A fuzzy logic control algorithm (FLC) was used to generate command voltages sent for smart outrigger damper system and the FLC was optimized by genetic algorithm. This study shows that the smart outrigger system can provide good control performance for reduction of both wind and earthquake responses compared to the general outrigger system.

Review of seismic vibration control using 'smart materials'

  • Valliappan, S.;Qi, K.
    • Structural Engineering and Mechanics
    • /
    • 제11권6호
    • /
    • pp.617-636
    • /
    • 2001
  • For the potential application of smart materials to seismic structural control, this paper reviews seismic control techniques for civil engineering structures, and developments of smart materials for vibration and noise control. Analytical and finite element methods adopted for the design of distributed sensors/actuators using piezoelectric materials are discussed. Investigation of optimum position of sensors/actuators and damping are also outlined.

개폐식 대공간 구조물을 위한 스마트 TMD 설계기법 개발 (Design Method Development of Smart TMD for Retractable-Roof Spatial Structure)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제17권3호
    • /
    • pp.107-115
    • /
    • 2017
  • In this paper, a structural design method of a smart tuned mass damper (TMD) for a retractable-roof spatial structure under earthquake excitation was proposed. For this purpose, a retractable-roof spatial structure was simplified to a single degree of freedom (SDOF) model. Dynamic characteristics of a retractable-roof spatial structure is changed based on opened or closed roof condition. This condition was considered in the numerical simulation. A magnetorheological (MR) damper was used to compose a smart TMD and a displacement based ground-hook control algorithm was used to control the smart TMD. The control effectiveness of a smart TMD under harmonic and earthquake excitation were evaluated in comparison with a conventional passive TMD. The vibration control robustness of a smart TMD and a passive TMD were compared along with the variation of natural period of a simplified structure. Dynamic responses of a smart TMD and passive TMD under resonant harmonic excitation and earthquake load were compared by varying mass ratio of TMD to total mass of the simplified structure. The design procedure proposed in this study is expected to be used for preliminary design of a smart TMD for a retractable-roof spatial structure.