• Title/Summary/Keyword: Smart charging

Search Result 153, Processing Time 0.022 seconds

Electric Vehicle Quick Charging System (전기자동차 급속 충전 시스템)

  • Cho, H.Y.;Kang, T.H.;Oh, J.H.;Goo, T.H.;Suh, I.Y.;Sim, E.B.;Song, C.Y.;Shin, Y.S.
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.324-325
    • /
    • 2010
  • 전기자동차 충전 인프라 구축은 스마트 그리드사업과 연계하여 스마트 트랜스포테이션(Smart Transportation)이라는 새로운 사업모델로 활발히 추진되고 있다. 충전인프라 구축은 전력망, 운영시스템, 과금 및 정산 시스템과 급속충전기로 구성된다. 스마트 트랜스포테이션 제주 실증단지 구축사업(한전 컨소시움)에 설치 운영 될 급속충전기의 HMI(Human Machine Interface), BMS 인터페이스, 운영알고리즘에 대하여 소개하고자 한다.

  • PDF

Control of Islanded Microgrid Using Fuzzy Logic (Fuzzy Logic을 이용한 마이크로그리드의 독립운전 제어)

  • Lee, Heung-Seok;Park, June Ho;Koo, Bon-Gil;Kim, Jong-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.727-737
    • /
    • 2014
  • This paper presents the design of Fuzzy PI controller that is used at BESS(Battery Energy Storage System) charging and discharging process for islanded operation in microgrid. Most of the PI controllers have fixed PI gains, but real-time updated gains are applied to PI controller using Fuzzy logic in this paper. The performances of suggested Fuzzy PI controller are simulated by PSCAD/EMTDC. As a result, output characteristics of ESS applied real-time updated gains to PI controller are faster than those of using fixed gains.

Development of Multi-Charging Voltage (48V/80V) 200A Smart Forklift Battery Charger based on SiC-FET for LVDC (LVDC용 SiC기반 다중전압(48V/80V) 200A급 스마트 지게차 충전기)

  • Ahn, Jung-Hoon;Sun, Daun;Song, Sunggeun
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.457-458
    • /
    • 2020
  • 본 논문은 저전압 직류배전 (LVDC)이 도입된 공장 및 물류센터 등 에서 다수의 전동 지게차를 운용할 때, 효과적으로 충전할 수 있는 지게차 배터리 충전기를 제안하였다. 제안하는 충전기는 SiC 반도체 및 의도적으로 비대칭으로 설계한 공진 인덕터를 사용한 두 개의 위상천이 풀브릿지 컨버터로 구성된다. 이를 통하여 최대 200A급 고속 충전 및 다종의 배터리 규격 (48V, 80V) 대응과 함께 고효율, 고전력밀도를 달성 하였다.

  • PDF

A Study on the User Needs for Developing Smart Fashion Items Using Energy-Harvesting Technology Based on Outdoor Activity (아웃도어 활동기반 에너지 하베스팅 스마트 패션 아이템 개발을 위한 사용자 니즈 분석)

  • Lee, Eunyoung;Roh, Jung-Sim
    • Fashion & Textile Research Journal
    • /
    • v.19 no.2
    • /
    • pp.221-229
    • /
    • 2017
  • This study researched the needs of smart fashion items using energy harvesting for outdoor wearers and surveyed the application areas and design preferences for energy-harvesting systems based on outdoor activities. A total of 217 subjects were surveyed. Subjects who had at least 3 years of experience in outdoor activities were selected in order to increase the reliability of the research results. The survey investigated lifestyles based on outdoor activities, outdoor clothing and electronic equipment usage, purchase style, utilization plan, and design preference for energy-harvesting clothing and supplies. The results showed that 62.7% of the respondents had experience in outdoor activities for more than five years. 96.3% of the subjects carried electronic equipment, and 179 participants(82.5%) experienced discomfort due to battery consumption/dead batteries during outdoor activities. 78.4% were interested in smat fashion items using energy-harvesting technology, and the energy-conversion technology that was useful for outdoor activities was "kinetic energy"(74.7%). Participants showed a high preference for a detachable type(30.9%) and a city type(69.1%) that can be worn in outdoor activities as well as in general life. The preferred location of the electric power-charging device was the "Hem area of top garment"(35.9%), and the reason for this selection was that it was easy to operate and did not interfere with movement. The data from this paper can be used as a basis for product planning and product design for energy-harvesting apparel designers and supply developers for outdoor clothing.

A Study on the V2G Application using the Battery of Electric Vehicles under Smart Grid Environment (스마트그리드 환경에서 전기자동차 배터리를 이용한 V2G의 활용방안에 관한 연구)

  • Choi, Jin-Young;Park, Eun-Sung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.1
    • /
    • pp.40-45
    • /
    • 2014
  • This study examines the system and process of battery stored energy in vehicles and suggest the effective area for the use of V2G(vehicle-to-grid) from Jeju Smart Grid Demonstration Project. V2G means technology of electric power transmission from the battery of electric-drive vehicles to state grid. As for the increasing of effectiveness for demand-side control, V2G is a very good alternative. In the U.S., the utilization of electric vehicles is under 40% on average. In this case, we can use he battery of electric vehicle as role of frequency regulation or generator of demand-side resource. V2G, which is the element of Smart Transportation, consists of electric vehicle battery, BMS(battery management system), OBC(on-board charger), charging infrastructure, NOC(network operating center) and TOC(total operation center). V2G application has been tested for frequency regulation to secure the economical efficiency in the United States. In this case, the battery cycle life is not verified its disadvantage. On the other hand, Demand Response is required by low c-rate of battery in electric vehicle and It can be small impact on the battery cycle life. This paper concludes business area of demand response is more useful than frequency regulation in V2G application of electric vehicles in Korea. This provides the opportunity to create a new business for power grid administrator with VPP(virtual power plant).

Energy harvesting techniques for remote corrosion monitoring systems

  • Kim, Sehwan;Na, Ungjin
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.555-567
    • /
    • 2013
  • An Remote Corrosion Monitoring (RCM) system consists of an anode with low potential, the metallic structures against corrosion, an electrode to provide reference potential, and a data-acquisition system to ensure the potential difference for anticorrosion. In more detail, the data-acquisition (DAQ) system monitors the potential difference between the metallic structures and a reference electrode to identify the correct potential level against the corrosion of the infrastructures. Then, the measured data are transmitted to a central office to remotely keep track of the status of the corrosion monitoring (CM) system. To date, the RCM system is designed to achieve low power consumption, so that it can be simply powered by batteries. However, due to memory effect and the limited number of recharge cycles, it can entail the maintenance fee or sometimes cause failure to protect the metallic structures. To address this issue, the low-overhead energy harvesting circuitry for the RCM systems has designed to replenish energy storage elements (ESEs) along with redeeming the leakage of supercapacitors. Our developed energy harvester can scavenge the ambient energy from the corrosion monitoring environments and store it as useful electrical energy for powering local data-acquisition systems. In particular, this paper considers the energy harvesting from potential difference due to galvanic corrosion between a metallic infrastructure and a permanent copper/copper sulfate reference electrode. In addition, supercapacitors are adopted as an ESE to compensate for or overcome the limitations of batteries. Experimental results show that our proposed harvesting schemes significantly reduce the overhead of the charging circuitry, which enable fully charging up to a 350-F supercapacitor under the low corrosion power of 3 mW (i.e., 1 V/3 mA).

Development of active discharge tester for high capacity lithium-ion battery (대용량 리튬 이온 배터리용 Active 방전시험기의 개발)

  • Park, Joon-Hyung;Yunana, Gani Dogara;Park, Chan Won
    • Journal of Industrial Technology
    • /
    • v.40 no.1
    • /
    • pp.13-18
    • /
    • 2020
  • Lithium-ion batteries have a small volume, light weight and high energy density, maximizing the utilization of mobile devices. It is widely used for various purposes such as electric bicycles and scooters (e-Mobility), mass energy storage (ESS), and electric and hybrid vehicles. To date, lithium-ion batteries have grown to focus on increasing energy density and reducing production costs in line with the required capacity. However, the research and development level of lithium-ion batteries seems to have reached the limit in terms of energy density. In addition, the charging time is an important factor for using lithium-ion batteries. Therefore, it was urgent to develop a high-speed charger to shorten the charging time. In this thesis, a discharger was fabricated to evaluate the capacity and characteristics of Li-ion battery pack which can be used for e-mobility. To achieve this, a smart discharger is designed with a combination of active load, current sensor, and temperature sensor. To carry out this thesis, an active load switching using sensor control circuit, signal processing circuit, and FET was designed and manufactured as hardware with the characteristics of active discharger. And as software for controlling the hardware of the active discharger, a Raspberry Pi control device and a touch screen program were designed. The developed discharger is designed to change the 600W capacity battery in the form of active load.

A Study on the Selection of Hydrogen Refueling Station Locations within Military Bases Considering Minimum Safe Distances between Adjacent Buildings (인접 건물 간 최소 안전거리를 고려한 군부대 내 수소충전소 위치선정 연구)

  • Dong-Yeon Kim;Hyuk-Jin Kwon
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.171-180
    • /
    • 2023
  • Hydrogen energy technology is gaining importance in the era of the Fourth Industrial Revolution, offering military advantages when applied to military vehicles due to its characteristics such as reduced greenhouse gas emissions, noise, and low vibration. Korea's military has initiated the Army Tiger 4.0 plan, focusing on hydrogen application, downsizing, and AI-based smart features. The Ministry of National Defense plans to collaborate with the Ministry of Environment to expand hydrogen charging stations nationwide, anticipating increased deployment of military hydrogen vehicles. However, considering the Jet Fire and VCE(Vapor Cloud Explosion) nature of hydrogen, ensuring safety during installation is crucial. Current military guidelines specify a minimum safety distance of 2m from adjacent buildings for charging stations. Scientific methods have been employed to quantitatively assess the accident damage range of hydrogen, proposing a minimum safety distance beyond the affected area.

Development and Evaluation of Children's Smart Photonic Safety Clothing ( 어린이의 스마트 포토닉 안전의복의 개발 및 평가)

  • Soon-Ja Park;Dae-jin, Ko;Sung-eun, Jang
    • Science of Emotion and Sensibility
    • /
    • v.26 no.2
    • /
    • pp.129-140
    • /
    • 2023
  • Following ISO 20471, in this study, first, two sets of safety clothes and safety vests were made by designing and attaching animal and bird patterns preferred by children to retroreflective films and black fabrics on those fluorescent fabrics and retroreflective materials prescribed by international standards. Second, by mounting a smart photonic device on the safety clothing so that the body can be recognized from a distance even without an ambient light source at night, children can emit three types of light depending on the situation with just one-touch of the button. From a result of comparison with visibility a day and night by dressing a mannequin in the made smart safety clothing, the difference in visibility was evident at night, it was confirmed that we can see the figure of a person even at a distance of approximately 70 m. Therefore, it is expected to contribute to the prevention of traffic and other accidents on the road, as the drivers driving at night or in bad weather can recognize a person from a distance. Third, in case of the energy is exhausted and cannot maintain the stability of the light-emitting function of the optical faber, we can use energy harvesting device, and the light-emitting time will be extended. As a result it comes up to emit light stably for a long time. And this prove that smart photonic safety clothing can also be used for night workers. Therefore, optical fiber safety clothing is expected to be highly wearable not only in real life but also in dark industrial sites due to stable charging by applying the energy harvesting provided by solar cells.

Development of Smart PCS(Power Conditioning System) Integrating PV/ESS for Home (가정용 태양광/ESS 통합 스마트 PCS 개발)

  • Lee, Sang-Hak
    • Journal of Digital Convergence
    • /
    • v.14 no.7
    • /
    • pp.193-200
    • /
    • 2016
  • Research and development of energy self-consumption introducing photovoltaic and energy storage system at home is very active. This system can manage the home energy in which it charges the electricity generated during the day and uses it during high electricity bills. However, it not yet made up the residential real-time pricing in Korea but it can reduce electricity usage to a certain target on the progressive. In order to introduce the home photovoltaic, it requires PCS(Power Conditioning System). This converts the direct current into alternating current by the electricity generated and used to perform charging and discharging of the energy storage system. The market for self-consumption smart home system is currently increasing because the interests of the general public about solar power, energy storage systems increased. The result of this study is installed on the room environment and the effect was analyzed on the assumption of real-time pricing.