• Title/Summary/Keyword: Smart air conditioning

Search Result 57, Processing Time 0.03 seconds

The Influence of Regulatory Focus on Consumer Responses to Smart Home Services for Energy Management

  • Kim, Moon-Yong;Cho, Heayon
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.221-226
    • /
    • 2020
  • Smart homes have become the state of the art in the reduction and monitoring of energy usage within a residential setting. Emerging threats such as climate change, global warming and volatility in energy prices have fuelled the interest in smart systems. Given that environmental sustainability has become a more significant factor for consumers, this research examines whether consumers' attitudes toward smart home services for efficient energy management differ according to their regulatory focus. Specifically, it is predicted that consumers will have more favorable attitudes toward smart home services for efficient energy management when they are promotion-focused (vs. prevention-focused). The results indicate that respondents with a promotion (vs. prevention) focus reported significantly more favorable attitudes toward smart home services for energy management (e.g., smart cooling/heating system, smart ventilation & air conditioning system, smart thermostats, smart plugs, and smart switches). We suggest that regulatory focus may be an effective marketing and segmentation tool in promoting smart home services for energy management and facilitating their receptiveness to the services.

Comparison of Energy Demand Characteristics for Hotel, Hospital, and Office Buildings in Korea (호텔, 병원, 업무용 건물의 에너지 부하 특성 비교)

  • Park, Hwa-Choon;Chung, Mo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.10
    • /
    • pp.553-558
    • /
    • 2009
  • Energy demand characteristics of hotel, hospital, and office building are compared to provide guidelines for combining building in community energy system design. The annual, monthly, and daily energy demand patterns for electricity, heating, hot water and cooling are qualitatively compared and important features are delineated based on the energy demand models. Key statistical values such as the mean, the maximum are also provided. Important features of the hourly demand patterns are summarized for weekdays and weekends. Substantial variations in both magnitudes and patterns are observed among the 3 building types and smart grouping or combination of building type and size is essential for a successive energy supply.

Metabolic Rate Estimation for ECG-based Human Adaptive Appliance in Smart Homes (인간 적응형 가전기기를 위한 거주자 심박동 기반 신체활동량 추정)

  • Kim, Hyun-Hee;Lee, Kyoung-Chang;Lee, Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.486-494
    • /
    • 2014
  • Intelligent homes consist of ubiquitous sensors, home networks, and a context-aware computing system. These homes are expected to offer many services such as intelligent air-conditioning, lighting control, health monitoring, and home security. In order to realize these services, many researchers have worked on various research topics including smart sensors with low power consumption, home network protocols, resident and location detection, context-awareness, and scenario and service control. This paper presents the real-time metabolic rate estimation method that is based on measured heart rate for human adaptive appliance (air-conditioner, lighting etc.). This estimation results can provide valuable information to control smart appliances so that they can adjust themselves according to the status of residents. The heart rate based method has been experimentally compared with the location-based method on a test bed.

A Study on the Strategy of Smart Charging System to Charge the PHEV in the House Which has a 1 kW Fuel Cell Cogeneration System (1 kW 급 가정용 연료전지 코제너레이션 시스템이 설치된 주택 내 플러그인 하이브리드 자동차의 스마트 충전전략 연구)

  • Roh, Chul-Woo;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.838-843
    • /
    • 2008
  • Cause of struggling to escape from dependency of fossil fuels, the fuel cell and the Plug-in Hybrid Electric Vehicle (PHEV) draw attention in the all of the world. Especially, the Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems have been anticipated for next generation's energy supplying system, and we can predict the PHEV will enlarge the market share in the next few years to reduce not only the air pollution in the metropolis but the fuel-expenses of commuters. This paper presents simulation results about the strategy of smart charging system for PHEV in the residential house which has 1 kW PEMFC cogeneration system. The smart charging system has a function of recommending the best time to charge the battery of PHEV by the lowest energy cost. The simulated energy cost for charging the battery based on the electricity demand data pattern in the house. The house which floor area is $132\;m^2$ (40 pyeong.). In these conditions, the annual gasoline, electricity, and total energy cost to fuel the PHEV versus Conventional Vehicle (CV) have been simulated in terms of cars' average life span in Korea.

  • PDF

A Novel Development of Distributed Intelligent Control Module Based on the LonWorks Fieldbus for Air Handling Units in the Healing, Ventilating and Air Conditioning (LonWork fieldbus 기반을 가진 HVAC 공기조화기용 고성능 지능형제어모듈 개발)

  • 홍원표
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.1
    • /
    • pp.115-121
    • /
    • 2004
  • In this paper, a new distributed intelligent control module based on LonWoks fieldbus for air handling unit(AHU) of heating, ventilating and air-conditioning(HVAC) is proposed to replace with a conventional direct digital control(DDC) system with 32 bit microprocessor. The proposed control architecture has a excellent features such as highly compact and flexible function design, a low priced smart front-end and reliable performance with various functions. This also addresses issues in control network configuration, logical design of field devices by S/W tool, Internet networking and electronic element installation. Experimental results for showing the system performance are also included in this paper.

A Study on the Implementation of Demand Response System in Smart Grid (스마트 그리드 수요 반응 시스템의 구현에 관한 연구)

  • Park, Ju Hyun;Hwang, Yu Min;Kim, Jin Young;Lee, Jae Jo
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.1
    • /
    • pp.44-48
    • /
    • 2015
  • The smart grid is a next-generation power grid to create a new value-added information technology. Power providers and consumers exchange information in real-time bi-directional, and optimize energy efficiency with using the smart grid. This paper describes the concept of demand response of the communication system used in the protocol, implementation of demand response systems with demand response scenarios for power reduction through the air conditioning control.

Research and Development of RFIC Technology in Smart Temperature Information Material

  • Chang, Chih-Yuan;Hung, San-Shan;Chang, Yu-Chueh;Peng, Yu-Fang
    • Journal of Construction Engineering and Project Management
    • /
    • v.1 no.1
    • /
    • pp.18-23
    • /
    • 2011
  • Conservation of energy and fuel is the trend in smart building design. Radio Frequency Integrated Circuit (RFIC) technology is often used in temperature sensing and signal transmission to manage indoor temperature, but it is rarely applied to the shell of the building. Heat retention and poor insulation in building shells are the largest causes of high energy consumption by indoor air conditioning. Through combining RFIC technology with temperature sensors, this study will develop smart temperature information material that can be embedded in concrete. In addition to accurately evaluating the effectiveness of shell insulation material, the already-designed Building Physiology Information System can monitor long-term temperature changes, leading to smarter building health management.

RESEARCH AND DEVELOPMENT OF RFIC TECHNOLOGY IN SMART TEMPERATURE INFORMATION MATERIAL

  • Chih-Yuan Chang;San-Shan Hung;Yu-Chueh Chang;Yu-Fang Peng
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.480-486
    • /
    • 2011
  • Conservation of energy and fuel is the trend in smart building design. Radio Frequency Integrated Circuit (RFIC) technology is often used in temperature sensing and signal transmission to manage indoor temperature, but it is rarely applied to the shell of the building. Heat retention and poor insulation in building shells are the largest causes of high energy consumption by indoor air conditioning. Through combining RFIC technology with temperature sensors, this study will develop smart temperature information material that can be embedded in concrete. In addition to accurately evaluating the effectiveness of shell insulation material, the already-designed Building Physiology Information System can monitor long-term temperature changes, leading to smarter building health management.

  • PDF

Development of an Energy Management Algorithm for Smart Energy House (스마트에너지하우스 구현을 위한 에너지 수요관리 알고리즘의 개발)

  • Jeon, Jeong-Pyo;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.515-524
    • /
    • 2010
  • Recently, many actions are taking to accelerate progress toward social consensus and implementation of Smart Grid. Smart Grid refers to a evolution of the electricity supply infrastructure that monitors, protects, and intelligently optimize the operation of the interconnected elements including various type of generators, power grid, building/home automation system and end-use consumers. The most distinguished element will be Advanced Metering Infrastructure (AMI) that will be installed to every end-use consumer's home or building and optimize the energy consumption of the end-use consumer. The key function of AMI is energy management capability that coordinates and optimally controls the various loads according to the operating condition and environments. In this study, we figure out the basic function of AMI in Smart Energy House that can be defined as a model house implementing in Smart Grid. This paper proposes the energy management algorithm that will be implemented in AMI at Smart Energy House. The paper also show how energy saving in Smart Energy House can be achieved applying the proposed algorithm to an actual house model that has mainly lighting, air-conditioning, TV loads.

Energy saving control system of wireless base station utilizing natural air-conditioning (자연공조를 활용한 무선기지국 Energy절감 제어시스템)

  • Ryu, Gu-Hwan;Kwon, Chang-Hee
    • Journal of Digital Convergence
    • /
    • v.17 no.10
    • /
    • pp.223-232
    • /
    • 2019
  • With the development of the information communication industry, the size of the communication device has been reduced to a system that generates a large amount of heat. Therefore, since the amount of heat generated by the wireless equipment is large in the wireless base station, the energy consumption is continuously consumed and the failure of the wireless base station may occur. Therefore, in this study, The study was analyzed. As a research method, we performed base station with a lot of calorific value and electric charge. We selected 25 base stations and obtained data for two weeks. To ensure reliability, the room temperature was kept constant at $27^{\circ}C$, and the control system was installed and equiped for two weeks to obtain the date analysis. In order to calculate the test results in the study method, the instrument was used with a computer, a digital thermometer, and dust measurement. For the date analysis, we conducted a research study on 25 wireless basestations before and after the installation of Control Sysetm.