• Title/Summary/Keyword: Smart Utility Networks

Search Result 19, Processing Time 0.017 seconds

Bandwidth-Efficient Precoding Scheme for Downlink Smart Utility Networks

  • Kim, Byung Wook
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.8
    • /
    • pp.1012-1019
    • /
    • 2014
  • The emerging smart utility networks (SUN) provide two-way communications between smart meters and smart appliances for purpose of low power usage, low cost, and high reliability. This paper deals with a bandwidth-efficient communication method based on the hidden pilot-aided scheme using a precoder in downlink SUN suitable for high-rate multimedia applications. With the aid of the design of a precoder and a superimposed hidden pilot, it is possible to estimate the channel without loss of bandwidth. In the channel estimation procedure, the inevitable data interference, which degrades the performance of channel estimation, can be reduced by the precoder design with an iterative scheme. Computer simulations show that the proposed scheme outperforms the conventional method in terms of achievable data rate, especially when a large number of subcarriers are employed.

Survey on Network Protocols for Energy Network Infrastructure based on Smart Utility Networks (스마트 유틸리티 네트워크 기반의 에너지 망 인프라 구축을 위한 네트워크 프로토콜에 관한 연구)

  • Hwang, Kwang-Il
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.3
    • /
    • pp.119-124
    • /
    • 2012
  • As an energy network infrastructure, which is capable of integrating energy related services such as AMR/AMI, Smart Grid, and Smart Water Grid, the Smart Utility Network (SUN) enables a paradigm shift from user-oriented networks to device-oriented networks. The SUN has some similarities to sensor networks in application and network requirements. Therefore it is required to investigate and analyze thoroughly existing related work in advance to design new network protocols for SUN. In this paper we analyze service requirements and design considerations for SUN and then present a design guideline of new network protocols for SUN by investigating existing low power protocols, data aggregation methods, and in-network storages.

Attacks, Vulnerabilities and Security Requirements in Smart Metering Networks

  • Hafiz Abdullah, Muhammad Daniel;Hanapi, Zurina Mohd;Zukarnain, Zuriati Ahmad;Mohamed, Mohamad Afendee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1493-1515
    • /
    • 2015
  • A smart meter is one of the core components in Advanced Metering Infrastructure (AMI) that is responsible for providing effective control and monitor of electrical energy consumptions. The multifunction tasks that a smart meter carries out such as facilitating two-way communication between utility providers and consumers, managing metering data, delivering anomalies reports, analyzing fault and power quality, simply show that there are huge amount of data exchange in smart metering networks (SMNs). These data are prone to security threats due to high dependability of SMNs on Internet-based communication, which is highly insecure. Therefore, there is a need to identify all possible security threats over this network and propose suitable countermeasures for securing the communication between smart meters and utility provider office. This paper studies the architecture of the smart grid communication networks, focuses on smart metering networks and discusses how such networks can be vulnerable to security attacks. This paper also presents current mechanisms that have been used to secure the smart metering networks from specific type of attacks in SMNs. Moreover, we highlight several open issues related to the security and privacy of SMNs which we anticipate could serve as baseline for future research directions.

Game-Theoretic Optimization of Common Control Channel Establishment for Spectrum Efficiency in Cognitive Small Cell Network

  • Jiao Yan
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • Cognitive small cell networks, consisting of macro-cells and small cells, are foreseen as a promising candidate solution to address 5G spectrum scarcity. Recently, many technological issues (such as spectrum sensing, spectrum sharing) related to cognitive small cell networks have been studied, but the common control channel (CCC) establishment problem has been ignored. CCC is an indispensable medium for control message exchange that could have a huge significant on transmitter-receiver handshake, channel access negotiation, topology change, and routing information updates, etc. Therefore, establishing CCC in cognitive small cell networks is a challenging problem. In this paper, we propose a potential game theory-based approach for CCC establishment in cognitive radio networks. We design a utility function and demonstrate that it is an exact potential game with a pure Nash equilibrium. To maintain the common control channel list (CCL), we develop a CCC update algorithm. The simulation results demonstrate that the proposed approach has good convergence. On the other hand, it exhibits good delay and overhead of all networks.

Non-Cooperative Game Joint Hidden Markov Model for Spectrum Allocation in Cognitive Radio Networks

  • Jiao, Yan
    • International journal of advanced smart convergence
    • /
    • v.7 no.1
    • /
    • pp.15-23
    • /
    • 2018
  • Spectrum allocation is a key operation in cognitive radio networks (CRNs), where secondary users (SUs) are usually selfish - to achieve itself utility maximization. In view of this context, much prior lit literature proposed spectrum allocation base on non-cooperative game models. However, the most of them proposed non-cooperative game models based on complete information of CRNs. In practical, primary users (PUs) in a dynamic wireless environment with noise uncertainty, shadowing, and fading is difficult to attain a complete information about them. In this paper, we propose a non-cooperative game joint hidden markov model scheme for spectrum allocation in CRNs. Firstly, we propose a new hidden markov model for SUs to predict the sensing results of competitors. Then, we introduce the proposed hidden markov model into the non-cooperative game. That is, it predicts the sensing results of competitors before the non-cooperative game. The simulation results show that the proposed scheme improves the energy efficiency of networks and utilization of SUs.

Analysis of Security Requirements on DCU and Development Protection Profile based on Common Criteria Version 3.1 (DCU 보안요구사항 분석 및 CC v3.1 기반의 보호프로파일 개발)

  • Cho, Youngjun;Kim, Sinkyu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.5
    • /
    • pp.1001-1011
    • /
    • 2014
  • Smart Grid Devices could have security vulnerabilities that have legacy communication networks because of the fact that Smart Grid employs bi-directional communications and adopted a variety of communication interface. Consequently, it is required to build concrete response processes and to minimize the damage of the cyber attacks including security evaluation and certification methods. DCU is designed to collect meter data from numerous smart meter and send to utility's server so DCU installed between smart meter and utility's server. For this reason, If DCU compromised by attacker then attacker could use DCU to launching point for and attack on other devices. However, DCU's security evaluation and certification techniques do not suffice to be deployed in smart grid infrastructure. This work development DCU protection profile based on CC, it is expected that provide some assistance to DCU manufacturer for development of DCU security target and to DCU operator for help safety management of DCU.

IEEE 802.11s based Wireless Mesh Networks for Smart Grid (스마트 그리드를 위한 IEEE 802.11s 기반 무선 메쉬 네트워크)

  • Jung, Ji-Sun;Kim, Jae-Beom;Ko, Young-Bae;Lee, Sang-Youm
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1390-1398
    • /
    • 2010
  • We present the concept of applying Wireless Mesh Networking (WMN) technology into Smart Grid, which is recently rising as a potential technology in various areas thanks to its advantages such as low installation costs, high scalability, and high flexibility. Smart Grid is an intelligent, next-generation electrical power network that can maximize energy efficiency by monitoring utility information in real-time and controlling the flow of electricity with IT communications technology converged to the existing power grid. WMNs must be designed for Smart Grid communication systems considering not only the high level of reliability, QoS support and mass-data treatment but also the properties of the traditional power grid. In addition, it is essential to design techniques based on international standards to support interoperability and scalability. In this paper, we evaluate the performance of IEEE 802.11s based Smart Grid Mesh Networks by conducting preliminary simulation studies with the ns-3 simulator. We also outline some challenging issues that should be reviewed when considering WMNs as the candidate for Smart Grid communication infrastructure.

Analysis of Blockchain Network and Cryptocurrency Safety Issues

  • Taegyu Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.40-50
    • /
    • 2023
  • Blockchain is a technology designed to prevent tampering with digital documents or information, safeguarding transaction data and managing it in a structured manner. This proves beneficial in addressing issues of trust and data protection in B2B, B2C, and C2B transactions. Blockchain finds utility not only in financial transactions but also across diverse industrial sectors. This study outlines significant cases and responses that jeopardize the security of blockchain networks and cryptocurrency technology. Additionally, it analyzes safety and risk factors related to blockchain and proposes effective testing methods to preemptively counter these challenges. Furthermore, this study presents key security evaluation metrics for blockchain to ensure a balanced assessment. Additionally, it provides evaluation methods and various test case models for validating the security of blockchain and cryptocurrency transaction services, making them easily applicable to the testing process.

Geometric Optimization Algorithm for Path Loss Model of Riparian Zone IoT Networks Based on Federated Learning Framework

  • Yu Geng;Tiecheng Song;Qiang Wang;Xiaoqin Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1774-1794
    • /
    • 2024
  • In the field of environmental sensing, it is necessary to develop radio planning techniques for the next generation Internet of Things (IoT) networks over mixed terrains. Such techniques are needed for smart remote monitoring of utility supplies, with links situated close to but out of range of cellular networks. In this paper, a three-dimension (3-D) geometric optimization algorithm is proposed, considering the positions of edge IoT devices and antenna coupling factors. Firstly, a multi-level single linkage (MLSL) iteration method, based on geometric objectives, is derived to evaluate the data rates over ISM 915 MHz channels, utilizing optimized power-distance profiles of continuous waves. Subsequently, a federated learning (FL) data selection algorithm is designed based on the 3-D geometric positions. Finally, a measurement example is taken in a meadow biome of the Mexican Colima district, which is prone to fluvial floods. The empirical path loss model has been enhanced, demonstrating the accuracy of the proposed optimization algorithm as well as the possibility of further prediction work.

Study on the Next Disaster Safety Communication Network in M2M Communication (사물지능통신을 이용한 차세대 재난안전통신망에 관한 연구)

  • Kang, Heau-Jo
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.585-590
    • /
    • 2011
  • In the past few years, M2M (Machine-to-Machine) applications have become a hot topic in the wireless industry. While M2M applications can be used for many purposes (smart homes, smart metering/electricity meter reading, fleet management, mobile workforce, automobile insurance, vending machines, etc), and in many sectors (healthcare, agriculture, commercial, industrial, retail, utility, etc.), smart metering applications or smart grids present the biggest growth potential in the M2M market today. M2M platform is the future ubiquitous network technologies which provide the integrated service with the networks and devices. The promising technologies to tackle these problems are the Semantic technologies, for interoperability, and the Agent technologies for management of complex systems. In this paper the information communication technique based on the disaster prevention system's for the M2M, concepts and its requirement technology and application are studied.