• Title/Summary/Keyword: Smart UAV

Search Result 219, Processing Time 0.024 seconds

Development of the Scaled Vehicle of Smart UAV (스마트무인기 축소형 비행체 개발)

  • Chang, Sung-Ho;Choi, Seong-Wook;Koo, Sam-Ok
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.236-244
    • /
    • 2007
  • The 40% scaled vehicle of Smart UAV has been developed for the investigation of basic flight characteristics and the verification of flight control algorithm. The similar gimbal hub and drive train with the full scale UAV were implemented and a forced air cooling reciprocating engine was installed. The various kind of tests were conducted for the major components of the vehicle. The important performance and mechanical endurance of the fabricated vehicle were identified by ground and hovering test.

  • PDF

States and Modes Analysis for Flight Control of Smart UAV (스마트 무인기 비행제어 상태/모드 분석)

  • Oh, Soo Hun
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.43-48
    • /
    • 2005
  • This paper describes the results of applying States and Modes Analysis, one of the requirements analysis techniques, to the development requirements of flight control software for Smart UAV. State/mode table enabled us to investigate various operation and design concepts, and as a result essential requirements for flight control software were established without omitting necessary requirements. Through the use of scenario-specific state transition diagrams, dynamic behaviours and control/response interfaces between each state and mode could been clearly identified, which made it possible to establish requirements related to dynamic behaviours of states and modes which are essential to the design of flight control software.

  • PDF

SE Model-Based Test & Evaluation System - Application Case for Smart UAV (SE 모델기반 시험평가 체계 - 스마트 무인기 적용사례)

  • Oh, Soo Hun;Kim, Yuen Tae;Lee, Joong Yoon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • For the systems engineering process-based development, all requirements of 'Smart UAV Development Program' have been constructed as the database of CORE(R), computer aided systems engineering tool. In this paper, the construction and application of model-based test & evaluation system using those database is described, which prevents omitting essential tests and performing unnecessary rests and enables automatic reflection of database changes and standardization of document formats.

  • PDF

Fuel System Design of the Smart UAV (스마트 무인기 연료 시스템 설계에 관한 연구)

  • Kong Chang-Duk;Kang Myoung-Cheol;Lee Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.54-61
    • /
    • 2005
  • In this study, the fundamental design procedure for the Smart UAV fuel supply system was set up, and the preliminary design was performed to meet the vehicle system requirements. The fuel system layout was determined through consideration of vehicle system requirements, and then fuel tank layout, design of components such as booster pump, jet pump, pipe, vent system, weight estimation, etc. were carried out. Based on this fuel system layout, operational reliability analysis was carried out.

Design of a Smart Attitude Control Algorithm based on the Fuzzy Logic (퍼지 로직 기반 스마트 자세제어 알고리즘의 설계)

  • Oh, Sun Jin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.257-262
    • /
    • 2019
  • Recently, with a great deal of attention and utilization to the UAV like a drone, many application cases using UAV in various fields have been proliferated rapidly. These UAV, however, has many risks like balance deviation and drone crash due to the external environmental factors. The attitude control algorithm for UAV is the most important portion in order to maintain the safe management of UAV, and the best solution is PID control algorithm which is generously used and almost perfect attitude control technology nowadays. In this paper, we propose the smart attitude control algorithm using fuzzy logic in order to provide safe and continuous attitude control against external environmental factors, and compare the performance through simulation study between PID and our algorithm.

Dynamic Computation Offloading Based on Q-Learning for UAV-Based Mobile Edge Computing

  • Shreya Khisa;Sangman Moh
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.68-76
    • /
    • 2023
  • Emerging mobile edge computing (MEC) can be used in battery-constrained Internet of things (IoT). The execution latency of IoT applications can be improved by offloading computation-intensive tasks to an MEC server. Recently, the popularity of unmanned aerial vehicles (UAVs) has increased rapidly, and UAV-based MEC systems are receiving considerable attention. In this paper, we propose a dynamic computation offloading paradigm for UAV-based MEC systems, in which a UAV flies over an urban environment and provides edge services to IoT devices on the ground. Since most IoT devices are energy-constrained, we formulate our problem as a Markov decision process considering the energy level of the battery of each IoT device. We also use model-free Q-learning for time-critical tasks to maximize the system utility. According to our performance study, the proposed scheme can achieve desirable convergence properties and make intelligent offloading decisions.

Advancements in Unmanned Aerial Vehicle Classification, Tracking, and Detection Algorithms

  • Ahmed Abdulhakim Al-Absi
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.32-39
    • /
    • 2023
  • This paper provides a comprehensive overview of UAV classification, tracking, and detection, offering researchers a clear understanding of these fundamental concepts. It elucidates how classification categorizes UAVs based on attributes, how tracking monitors real-time positions, and how detection identifies UAV presence. The interconnectedness of these aspects is highlighted, with detection enhancing tracking and classification aiding in anomaly identification. Moreover, the paper emphasizes the relevance of simulations in the context of drones and UAVs, underscoring their pivotal role in training, testing, and research. By succinctly presenting these core concepts and their practical implications, the paper equips researchers with a solid foundation to comprehend and explore the complexities of UAV operations and the role of simulations in advancing this dynamic field.

Smart Anti-jamming Mobile Communication for Cloud and Edge-Aided UAV Network

  • Li, Zhiwei;Lu, Yu;Wang, Zengguang;Qiao, Wenxin;Zhao, Donghao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4682-4705
    • /
    • 2020
  • The Unmanned Aerial Vehicles (UAV) networks consisting of low-cost UAVs are very vulnerable to smart jammers that can choose their jamming policies based on the ongoing communication policies accordingly. In this article, we propose a novel cloud and edge-aided mobile communication scheme for low-cost UAV network against smart jamming. The challenge of this problem is to design a communication scheme that not only meets the requirements of defending against smart jamming attack, but also can be deployed on low-cost UAV platforms. In addition, related studies neglect the problem of decision-making algorithm failure caused by intermittent ground-to-air communication. In this scheme, we use the policy network deployed on the cloud and edge servers to generate an emergency policy tables, and regularly update the generated policy table to the UAVs to solve the decision-making problem when communications are interrupted. In the operation of this communication scheme, UAVs need to offload massive computing tasks to the cloud or the edge servers. In order to prevent these computing tasks from being offloaded to a single computing resource, we deployed a lightweight game algorithm to ensure that the three types of computing resources, namely local, edge and cloud, can maximize their effectiveness. The simulation results show that our communication scheme has only a small decrease in the SINR of UAVs network in the case of momentary communication interruption, and the SINR performance of our algorithm is higher than that of the original Q-learning algorithm.

Research Trend Analysis of Risk Cost Model for UAM Flight Path Planning (UAM 비행 경로 계획을 위한 위험 비용 모델 연구 동향 분석)

  • Jae-Hyeon Kim;Dong-Min Lee;Myeong-Jin Lee;Yeong-Hoon Choi;Ji-Hun Kwon;Jong-Whoa Na
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.68-76
    • /
    • 2024
  • With the recent rapid growth of the domestic and international unmanned aerial vehicle (UAV) market and the increasing importance of UAV operations in urban centers, such as UAMs, the safety management and regulatory framework for human life and property damage caused by UAV failures has been emphasized. In this study, we conducted a comparative analysis of risk-cost models that evaluate the risk of an operating area for safe UAM flight path planning, and identified the main limitations of each model to derive considerations for future model development. By providing a basic model for improving the safety of UAM operations, this study is expected to make an important contribution to technical improvements and policy decisions in the field of UAM flight path planning.

Transient Response Analysis for a Smart UAV Considering Dynamic Loads by Rotating Rotor and Wakes (회전로터 및 후류 동하중을 고려한 스마트 무인기 천이응답해석)

  • Kim, Hyun-Jung;Oh, Se-Won;Kim, Sung-Jun;Choi, Ik-Hyeon;Kim, Tae-Wook;Lee, Sang-Uk;Kim, Jin-Won;Lee, Jung-Jin;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.926-936
    • /
    • 2006
  • In this study, structural vibration analyses of a smart unmanned aerial vehicle (UAV) have been conducted considering dynamic loads generated by rotating rotor and wakes. The present UAV (TR-S5-03) finite element model is constructed as a full three-dimensional configuration with different fuel conditions and tilting angles for helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis (MTRA) is established using general purpose finite element method (FEM) and computational fluid dynamics (CFD) technique. The dynamic loads generated by rotating blades in the transient and forward flight conditions are calculated by unsteady CFD technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations are presented in detail. In addition, vibration characteristics of structural parts and installed equipments are investigated for different fuel conditions and tilting angles.