• Title/Summary/Keyword: Smart Systems and Services

Search Result 609, Processing Time 0.021 seconds

Secure SLA Management Using Smart Contracts for SDN-Enabled WSN

  • Emre Karakoc;Celal Ceken
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3003-3029
    • /
    • 2023
  • The rapid evolution of the IoT has paved the way for new opportunities in smart city domains, including e-health, smart homes, and precision agriculture. However, this proliferation of services demands effective SLAs between customers and service providers, especially for critical services. Difficulties arise in maintaining the integrity of such agreements, especially in vulnerable wireless environments. This study proposes a novel SLA management model that uses an SDN-Enabled WSN consisting of wireless nodes to interact with smart contracts in a straightforward manner. The proposed model ensures the persistence of network metrics and SLA provisions through smart contracts, eliminating the need for intermediaries to audit payment and compensation procedures. The reliability and verifiability of the data prevents doubts from the contracting parties. To meet the high-performance requirements of the blockchain in the proposed model, low-cost algorithms have been developed for implementing blockchain technology in wireless sensor networks with low-energy and low-capacity nodes. Furthermore, a cryptographic signature control code is generated by wireless nodes using the in-memory private key and the dynamic random key from the smart contract at runtime to prevent tampering with data transmitted over the network. This control code enables the verification of end-to-end data signatures. The efficient generation of dynamic keys at runtime is ensured by the flexible and high-performance infrastructure of the SDN architecture.

Measuring Service Quality of Mobile Trading Systems and its Impact on the Intention to Continuous Use (모바일 증권거래 시스템에 대한 사용자의 지속적 이용의도와 서비스 품질 측정요소)

  • Choi, Jaewon;Jang, Jung Hee;Kim, Beomsoo
    • Journal of Information Technology Services
    • /
    • v.12 no.2
    • /
    • pp.301-319
    • /
    • 2013
  • Wireless and mobile communication technologies enable individuals who trade stocks and bonds to use mobile-based trading services. Due to rapidly developing mobile technologies and adoption of the advanced/smart mobile devices such as smart phones and tablets, the use of mobile trading systems (MTS) have increased at an unexpected rate. Although many prior studies measured service quality on various service-related fields, there are few studies that is related to mobile trading systems compared to more traditional PC-based home trading systems. This research searches determinants of service quality for mobile trading systems and examines the effects of these factors on the intention to mobile trading systems' continuous use. Through an extensive literature review, this research finds three dimensions for mobile trading systems : interaction quality, service environment quality, and service outcome quality. The result of analysis shows that personalization, connectivity, ease of use, informativeness, and monetary value enhance the intention to continuous use. Considering environmental conditions such as the high rate of MTS adoption among individual users and stiffer competition among securities firms, these findings may help practically securities firms' shaping MTS system development strategies for individual users' continuous use and for increasing new users adoption.

Wide-Area SCADA System with Distributed Security Framework

  • Zhang, Yang;Chen, Jun-Liang
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.597-605
    • /
    • 2012
  • With the smart grid coming near, wide-area supervisory control and data acquisition (SCADA) becomes more and more important. However, traditional SCADA systems are not suitable for the openness and distribution requirements of smart grid. Distributed SCADA services should be openly composable and secure. Event-driven methodology makes service collaborations more real-time and flexible because of the space, time and control decoupling of event producer and consumer, which gives us an appropriate foundation. Our SCADA services are constructed and integrated based on distributed events in this paper. Unfortunately, an event-driven SCADA service does not know who consumes its events, and consumers do not know who produces the events either. In this environment, a SCADA service cannot directly control access because of anonymous and multicast interactions. In this paper, a distributed security framework is proposed to protect not only service operations but also data contents in smart grid environments. Finally, a security implementation scheme is given for SCADA services.

A study of Reference Model of Smart Library based on Linked Open Data (링크드오픈데이터 기반 스마트 라이브러리의 참조모델에 관한 연구)

  • Moon, Hee-kyung;Han, Sung-kook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1666-1672
    • /
    • 2016
  • In recent years, smart technology has been applied to various information system fields. Especially, traditional library service area is changing to Smart-Library from Digital-Library. In this environment are need to library service software platform for supporting variety content, library services, users and smart-devices. Due to this, existing library service has a limitation that inhibits semantic interoperability between different heterogeneous library systems. In this paper, we propose Linked-Open-Data based smart library as an archetype of future-library system that provide a variety content and system interaction and integration of services. It is an innovative system of the cutting-edge information intensive. Therefore, we designed system environments according to various integration requirements for smart library based on Linked-Open-Data. And, we describe the functional requirements of smart-library systems by considering the users' demands and the eco-systems of information technology. In addition, we show the reference framework, which can accommodate the functional requirements and provide smart knowledge service to user through a variety of smart-devices.

Evolution of Integrated Management Systems for Smart Library

  • Min, Byung-Won;Oh, Yong-Sun
    • International Journal of Contents
    • /
    • v.8 no.4
    • /
    • pp.12-20
    • /
    • 2012
  • For a library to be able provide information services and fulfill its function as a knowledge convergence center capable of responding to various information demands, the development of next-generation information systems based on the latest information and communication technology is needed. The development of mobile information services using portable devices such smart phones and tablet PCs and information systems which incorporate the concepts of cloud computing, SaaS (Software as a Service), annotation and Library2.0 is also required. This paper describes a library information system that utilizes collective intelligence and cloud computing. The information system developed for this study adopts the SaaS-based cloud computing service concept to cope with the shift in the mobile service paradigm in libraries and the explosion of electronic data. The strengths of such a conceptual model include the sharing of resources, support of multi-tenants, and the configuration and support of metadata. The user services are provided in the form of software on-demand. To test the performance of the developed system, the efficiency analysis and TTA certification test were conducted. The results of performance tests, It is encouraging that, at least up to 100MB, the job time is approximately linear and with only a moderate overhead of less than one second. The system also passed the level-3 or higher criteria in the certification test, which includes the SaaS maturity, performance and application program functions.

Developing a Classification of Vulnerabilities for Smart Factory in SMEs: Focused on Industrial Control Systems (중소기업용 스마트팩토리 보안 취약점 분류체계 개발: 산업제어시스템 중심으로)

  • Jeong, Jae-Hoon;Kim, Tae-Sung
    • Journal of Information Technology Services
    • /
    • v.21 no.5
    • /
    • pp.65-79
    • /
    • 2022
  • The smart factory has spread to small and mid-size enterprises (SMEs) under the leadership of the government. Smart factory consists of a work area, an operation management area, and an industrial control system (ICS) area. However, each site is combined with the IT system for reasons such as the convenience of work. As a result, various breaches could occur due to the weakness of the IT system. This study seeks to discover the items and vulnerabilities that SMEs who have difficulties in information security due to technology limitations, human resources, and budget should first diagnose and check. First, to compare the existing domestic and foreign smart factory vulnerability classification systems and improve the current classification system, the latest smart factory vulnerability information is collected from NVD, CISA, and OWASP. Then, significant keywords are extracted from pre-processing, co-occurrence network analysis is performed, and the relationship between each keyword and vulnerability is discovered. Finally, the improvement points of the classification system are derived by mapping it to the existing classification system. Therefore, configuration and maintenance, communication and network, and software development were the items to be diagnosed and checked first, and vulnerabilities were denial of service (DoS), lack of integrity checking for communications, inadequate authentication, privileges, and access control in software in descending order of importance.

Inter-space Interaction Issues Impacting Middleware Architecture of Ubiquitous Pervasive Computing

  • Lim, Shin-Young;Helal, Sumi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.42-51
    • /
    • 2008
  • We believe that smart spaces, offering pervasive services, will proliferate. However, at present, those islands of smart spaces should be joined seamlessly with each other. As users move about, they will have to roam from one autonomous smart space to another. When they move into the new island of smart space, they should setup their devices and service manually or not have access to the services available in their home spaces. Sometimes, there will conflicts between users when they try to occupy the same space or use a specific device at the same time. It will also be critical to elder people who suffer from Alzheimer or other cognitive impairments when they travel from their smart space to other visited spaces (e.g., grocery stores, museums). Furthermore our experience in building the Gator Tech Smart House reveals to us that home residents generally do not want to lose or be denied all the features or services they have come to expect simply because they move to a new smart space. The seamless inter-space interaction requirements and issues are raised automatically when the ubiquitous pervasive computing system tries to establish the user's service environment by allocating relevant resources after the user moves to a new location where there are no prior settings for the new environment. In this paper, we raise and present several critical inter-space interactions issues impacting middleware architecture design of ubiquitous pervasive computing. We propose requirements for resolving these issues on seamless inter-space operation. We also illustrate our approach and ideas via a service scenario moving around two smart spaces.

A Survey on 5G Enabled Multi-Access Edge Computing for Smart Cities: Issues and Future Prospects

  • Tufail, Ali;Namoun, Abdallah;Alrehaili, Ahmed;Ali, Arshad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.107-118
    • /
    • 2021
  • The deployment of 5G is in full swing, with a significant yearly growth in the data traffic expected to reach 26% by the year and data consumption to reach 122 EB per month by 2022 [10]. In parallel, the idea of smart cities has been implemented by various governments and private organizations. One of the main objectives of 5G deployment is to help develop and realize smart cities. 5G can support the enhanced data delivery requirements and the mass connection requirements of a smart city environment. However, for specific high-demanding applications like tactile Internet, transportation, and augmented reality, the cloud-based 5G infrastructure cannot deliver the required quality of services. We suggest using multi-access edge computing (MEC) technology for smart cities' environments to provide the necessary support. In cloud computing, the dependency on a central server for computation and storage adds extra cost in terms of higher latency. We present a few scenarios to demonstrate how the MEC, with its distributed architecture and closer proximity to the end nodes can significantly improve the quality of services by reducing the latency. This paper has surveyed the existing work in MEC for 5G and highlights various challenges and opportunities. Moreover, we propose a unique framework based on the use of MEC for 5G in a smart city environment. This framework works at multiple levels, where each level has its own defined functionalities. The proposed framework uses the MEC and introduces edge-sub levels to keep the computing infrastructure much closer to the end nodes.

Smart Sensor Management System Supporting Service Plug-In in MQTT-Based IIoT Applications

  • Lee, Young-Ran;Kim, Sung-Ki
    • Journal of Multimedia Information System
    • /
    • v.9 no.3
    • /
    • pp.209-218
    • /
    • 2022
  • Industrial IoT applications, including smart factories, require two problem-solving to build data monitoring systems required by services from distributed IoT sensors (smart sensors). One is to overcome proprietary protocols, data formats, and hardware differences and to uniquely identify and connect IoT sensors, and the other is to overcome the problem of changing the server-side data storage structure and sensor data transmission format according to the addition or change of service or IoT sensors. The IEEE 1451.4 standard-based or IPMI specification-based smart sensor technology supports the development of plug-and-play sensors that solve the first problem. However, there is a lack of research that requires a second problem-solving, which requires support for the plug-in of IoT sensors into remote services. To propose a solution for the integration of these two problem-solving, we present a IoT sensor platform, a service system architecture, and a service plugin protocol for the MQTT-based IIoT application environment.

A Study on Data Management and Communication Infrastructure Based Upon Standards for Smart Grid Operation (스마트그리드 운영을 위한 표준 기반 데이터 관리 및 통신 인프라에 관한 연구)

  • Choi, Seung-Hwan;Shin, Jin-Ho;Kim, Jun-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1209-1216
    • /
    • 2013
  • Recently, there is a rising interest in smart grid operating system which manages various types of distributed generation, smart meters, and electric vehicles with power grid. Considering the features of smart grid environment, the interoperability should be one of the important factors to build smart grid environment successfully. To secure interoperability, smart grid operating system should conform to some standards in terms of the data representation and communication. CIM and OPC-UA are the international standards widely used in smart grid domain for enabling interoperability. They provide common information model and the unified architecture for communicating between each systems or applications. In this paper, we illustrate a smart grid operating system that we have developed to secure interoperability between not only applications but also numerous legacy systems(applications) by implementing CIM based information model and OPC-UA based communication interface services.