• Title/Summary/Keyword: Smart Node

Search Result 350, Processing Time 0.035 seconds

Conceptual Design of Networking Node with Real-time Monitoring for QoS Coordination of Tactical-Mesh Traffic (전술메쉬 트래픽 QoS 조율을 위한 네트워킹 노드의 개념 설계 및 실시간 모니터링)

  • Shin, Jun-Sik;Kang, Moonjoong;Park, Juman;Kwon, Daehoon;Kim, JongWon
    • Smart Media Journal
    • /
    • v.8 no.2
    • /
    • pp.29-38
    • /
    • 2019
  • With the advancement of information and communication technology, tactical networks are continuously being converted to All-IP future tactical networks that integrate all application services based on Internet protocol. Futuristic tactical mesh network is built with tactical WAN (wide area network) nodes that are inter-connected by a mesh structure. In order to guarantee QoS (quality of service) of application services, tactical service mesh (TSM) is suggested as an intermediate layer between infrastructure and application layers for futuristic tactical mesh network. The tactical service mesh requires dynamic QoS monitoring and control for intelligent QoS coordination. However, legacy networking nodes used for existing tactical networks are difficult to support these functionality due to inflexible monitoring support. In order to resolve such matter, we propose a tactical mesh WAN node as a hardware/software co-designed networking node in this paper. The tactical mesh WAN node is conceptually designed to have multi-access networking interfaces and virtualized networking switches by leveraging the DANOS whitebox server/switch. In addition, we explain how to apply eBPF-based traffic monitoring to the tactical mesh WAN node and verify the traffic monitoring feasibility for supporting QoS coordination of tactical-mesh traffic.

Implementation of an Intelligent Grid Computing Architecture for Transient Stability Constrained TTC Evaluation

  • Shi, Libao;Shen, Li;Ni, Yixin;Bazargan, Masound
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.20-30
    • /
    • 2013
  • An intelligent grid computing architecture is proposed and developed for transient stability constrained total transfer capability evaluation of future smart grid. In the proposed intelligent grid computing architecture, a model of generalized compute nodes with 'able person should do more work' feature is presented and implemented to make full use of each node. A timeout handling strategy called conditional resource preemption is designed to improve the whole system computing performance further. The architecture can intelligently and effectively integrate heterogeneous distributed computing resources around Intranet/Internet and implement the dynamic load balancing. Furthermore, the robustness of the architecture is analyzed and developed as well. The case studies have been carried out on the IEEE New England 39-bus system and a real-sized Chinese power system, and results demonstrate the practicability and effectiveness of the intelligent grid computing architecture.

Performance Evaluation of Imote2-Platformed Wireless Smart Sensor Node for Health Monitoring of Harbor Structures (항만구조물 건전성 모니터링을 위한 Imote2 플랫폼 기반 스마트 무선센서노드의 성능 평가)

  • Park, Jae-Hyung;Kim, Jeong-Tae;Lee, So-Young
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.26-33
    • /
    • 2011
  • In this study, a high-sensitive smart wireless sensor based on an Imote2 sensor platform is developed for structural health monitoring of harbor structures. To achieve the objective, the following approaches are implemented. Firstly, the smart wireless sensor based on the high-performance Imote2 sensor platform is designed to measure acceleration with high sensitivity from structures. Secondly, embedded software is designed for autonomous structural health monitoring. Finally, the performance of the smart wireless sensor is estimated from experimental tests on a lab-scaled caisson structure.

Mobile Junk Message Filter Reflecting User Preference

  • Lee, Kyoung-Ju;Choi, Deok-Jai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.11
    • /
    • pp.2849-2865
    • /
    • 2012
  • In order to block mobile junk messages automatically, many studies on spam filters have applied machine learning algorithms. Most previous research focused only on the accuracy rate of spam filters from the view point of the algorithm used, not on individual user's preferences. In terms of individual taste, the spam filters implemented on a mobile device have the advantage over spam filters on a network node, because it deals with only incoming messages on the users' phone and generates no additional traffic during the filtering process. However, a spam filter on a mobile phone has to consider the consumption of resources, because energy, memory and computing ability are limited. Moreover, as time passes an increasing number of feature words are likely to exhaust mobile resources. In this paper we propose a spam filter model distributed between a users' computer and smart phone. We expect the model to follow personal decision boundaries and use the uniform resources of smart phones. An authorized user's computer takes on the more complex and time consuming jobs, such as feature selection and training, while the smart phone performs only the minimum amount of work for filtering and utilizes the results of the information calculated on the desktop. Our experiments show that the accuracy of our method is more than 95% with Na$\ddot{i}$ve Bayes and Support Vector Machine, and our model that uses uniform memory does not affect other applications that run on the smart phone.

Control of free vibration with piezoelectric materials: Finite element modeling based on Timoshenko beam theory

  • Song, Myung-Kwan;Noh, Hyuk-Chun;Kim, Sun-Hoon;Han, In-Seon
    • Structural Engineering and Mechanics
    • /
    • v.19 no.5
    • /
    • pp.477-501
    • /
    • 2005
  • In this study, a new smart beam finite element is proposed for the finite element modeling of beam-type smart structures that are equipped with bonded plate-type piezoelectric sensors and actuators. Constitutive equations for the direct piezoelectric effect and converse piezoelectric effect of piezoelectric materials are considered in the formulation. By using a variational principle, the equations of motion for the smart beam finite element are derived. The proposed 2-node beam finite element is an isoparametric element based on Timoshenko beam theory. The proposed smart beam finite element is applied to the free vibration control adopting a constant gain feedback scheme. The electrical force vector, which is obtained in deriving an equation of motion, is the control force equivalent to that in existing literature. Validity of the proposed element is shown through comparing the analytical results of the verification examples with those of other previous researchers. With the use of smart beam finite elements, simulation of free vibration control is demonstrated by sensing the voltage of the piezoelectric sensors and by applying the voltages to the piezoelectric actuators.

Smart Grid Cooperative Communication with Smart Relay

  • Ahmed, Mohammad Helal Uddin;Alam, Md. Golam Rabiul;Kamal, Rossi;Hong, Choong Seon;Lee, Sungwon
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.640-652
    • /
    • 2012
  • Many studies have investigated the smart grid architecture and communication models in the past few years. However, the communication model and architecture for a smart grid still remain unclear. Today's electric power distribution is very complex and maladapted because of the lack of efficient and cost-effective energy generation, distribution, and consumption management systems. A wireless smart grid communication system can play an important role in achieving these goals. In this paper, we describe a smart grid communication architecture in which we merge customers and distributors into a single domain. In the proposed architecture, all the home area networks, neighborhood area networks, and local electrical equipment form a local wireless mesh network (LWMN). Each device or meter can act as a source, router, or relay. The data generated in any node (device/meter) reaches the data collector via other nodes. The data collector transmits this data via the access point of a wide area network (WAN). Finally, data is transferred to the service provider or to the control center of the smart grid. We propose a wireless cooperative communication model for the LWMN.We deploy a limited number of smart relays to improve the performance of the network. A novel relay selection mechanism is also proposed to reduce the relay selection overhead. Simulation results show that our cooperative smart grid (coopSG) communication model improves the end-to-end packet delivery latency, throughput, and energy efficiency over both the Wang et al. and Niyato et al. models.

Analysis of Transaction Networks among Korean IT Corporations in Nine Metropolitan Regions: Assessing Connection Strengths and Developing a Node Centrality Composite Indicator (국내 IT 기업 대상 9개 광역권 지역의 거래 네트워크 분석: 연결강도 분석 및 노드 중심성 복합지표 개발)

  • Geon Jae Yu;Hyun Sang Lee;Choong Kwon Lee
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.108-121
    • /
    • 2024
  • In the IT industry, the complexity and volatility of corporate networks are gradually evolving, and concurrently, the significance of corporate networks is increasing. Previous research has employed network analysis to scrutinize inter-corporate trade relationships for strategic and policy making. However, previous studies focused on the overall network structure from a macroscopic perspective, presenting limitations in applicability at the individual IT corporation level. This study develops a novel research model incorporating sector and region-level network analysis based on connection strength, along with the derivation of a composite node centrality indicator. Using this methodology, we analyzed corporate networks across nine metropolitan areas using IT corporate transaction data. The results means that cities with a manufacturing base, such as Incheon, Busan, and Daegu, have recently established cooperative networks with IT companies. We also found that in the IT industry in Gwangju and Daejeon, certain companies dominate the transaction network.

On Reducing False Positives of a Bloom Filter in Trie-Based Algorithms

  • Mun, Ju Hyoung;Lim, Hyesook
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.3
    • /
    • pp.163-168
    • /
    • 2015
  • Many IP address lookup approaches employ Bloom filters to obtain a high-speed search performance. Especially, it has been recently studied that the search performance of trie-based algorithms can be significantly improved by adding Bloom filters. In such algorithms, the number of trie accesses can be greatly reduced because Bloom filters can determine whether a node exists in a trie without actually accessing the trie. Bloom filters do not have false negatives but have false positives. False positives can lead to unnecessary trie accesses. The false positive rate must thus be reduced to enhance the performance of lookup algorithms applying Bloom filters. One important characteristic of trie-based algorithms is that all the ancestors of a node are also stored. The proposed algorithm utilizes this characteristic in reducing the false positive rate of a Bloom filter without increasing the size of the memory for the Bloom filter. When a Bloom filter produces a positive result for a node of a trie, we propose to check whether the ancestors of the node are also positives. Because Bloom filters have no false negatives, the negatives of any of the ancestors mean that the positive of the node is false. In other words, we propose to use more Bloom filter queries to reduce the false positive rate of a Bloom filter in trie-based algorithms. Simulation results show that querying one ancestor of a node can reduce the false positive rate by up to 67% with exactly the same architecture and the same memory requirement. The proposed approach can be applied to other trie-based algorithms employing Bloom filters.

Implementation of factory monitoring system using MQTT and Node-RED (MQTT와 Node-RED를 이용한 설비 모니터링 시스템의 구현)

  • Oh, Se-Chun;Kim, Tae-Hyung;Kim, Young-Gon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.211-218
    • /
    • 2018
  • Recently, various technologies related to IIoT are introduced continuously due to the spread of IoT and smart factory industries. This paper proposes the construction of a two-way wireless network system for monitoring plant equipment using these various technologies. The main technologies used in this thesis are design techniques for micro sensor nodes to monitor facility conditions at various sites, MQTT technology for wireless communication between local server and sensor nodes and Node-RED based design technologies, which store data collected and can be easily presented to users via wired and wireless wires. In addition, a wireless two-way camera system was also implemented in which the screen images of the site can be viewed in the situation room according to the instructions of the situation room when determining abnormal conditions.

Ultra low-power active wireless sensor for structural health monitoring

  • Zhou, Dao;Ha, Dong Sam;Inman, Daniel J.
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.675-687
    • /
    • 2010
  • Structural Health Monitoring (SHM) is the science and technology of monitoring and assessing the condition of aerospace, civil and mechanical infrastructures using a sensing system integrated into the structure. Impedance-based SHM measures impedance of a structure using a PZT (Lead Zirconate Titanate) patch. This paper presents a low-power wireless autonomous and active SHM node called Autonomous SHM Sensor 2 (ASN-2), which is based on the impedance method. In this study, we incorporated three methods to save power. First, entire data processing is performed on-board, which minimizes radio transmission time. Considering that the radio of a wireless sensor node consumes the highest power among all modules, reduction of the transmission time saves substantial power. Second, a rectangular pulse train is used to excite a PZT patch instead of a sinusoidal wave. This eliminates a digital-to-analog converter and reduces the memory space. Third, ASN-2 senses the phase of the response signal instead of the magnitude. Sensing the phase of the signal eliminates an analog-to-digital converter and Fast Fourier Transform operation, which not only saves power, but also enables us to use a low-end low-power processor. Our SHM sensor node ASN-2 is implemented using a TI MSP430 microcontroller evaluation board. A cluster of ASN-2 nodes forms a wireless network. Each node wakes up at a predetermined interval, such as once in four hours, performs an SHM operation, reports the result to the central node wirelessly, and returns to sleep. The power consumption of our ASN-2 is 0.15 mW during the inactive mode and 18 mW during the active mode. Each SHM operation takes about 13 seconds to consume 236 mJ. When our ASN-2 operates once in every four hours, it is estimated to run for about 2.5 years with two AAA-size batteries ignoring the internal battery leakage.