DOI QR코드

DOI QR Code

Performance Evaluation of Imote2-Platformed Wireless Smart Sensor Node for Health Monitoring of Harbor Structures

항만구조물 건전성 모니터링을 위한 Imote2 플랫폼 기반 스마트 무선센서노드의 성능 평가

  • Park, Jae-Hyung (Department of Ocean Engineering, Pukyong National University) ;
  • Kim, Jeong-Tae (Department of Ocean Engineering, Pukyong National University) ;
  • Lee, So-Young (Department of Ocean Engineering, Pukyong National University)
  • Received : 2010.10.07
  • Accepted : 2010.12.13
  • Published : 2011.02.28

Abstract

In this study, a high-sensitive smart wireless sensor based on an Imote2 sensor platform is developed for structural health monitoring of harbor structures. To achieve the objective, the following approaches are implemented. Firstly, the smart wireless sensor based on the high-performance Imote2 sensor platform is designed to measure acceleration with high sensitivity from structures. Secondly, embedded software is designed for autonomous structural health monitoring. Finally, the performance of the smart wireless sensor is estimated from experimental tests on a lab-scaled caisson structure.

본 연구에서는 항만구조물의 구조건전성 모니터링을 위한 Imote2 센서 플랫폼 기반의 고민감도 스마트 무선센서를 개발하였다. 이를 위해 첫째, 고성능 Imote2 센서 플랫폼을 기반으로 하고, 고민감도 MEMS 가속도계를 탑재한 스마트 무선센서를 설계하였다. 둘째, 스마트 무선센서가 독자적으로 모니터링을 수행할 수 있도록 하는 내장 소프트웨어를 설계하였다. 마지막으로, 개발된 스마트 무선센서의 성능을 모형 케이슨 구조물에서의 실험을 통해 검증하였다.

Keywords

References

  1. 김두기, 류희룡, 서형렬, 장성규 (2005). 가진 주파수성분에 따른 항만구조물의 지진응답특성에 관한 연구. 한국해안해양공회지, 17(1), 41-46.
  2. 이소영, 김정태, 이진학, 강윤구 (2009). 최적화 화음탐색법을 이용한 항만 케이슨 구조물의 구조건전성 평가. 한국해양공학회지, 23(1), 122-128.
  3. 이소영, 김정태, 김헌태 (2010). 사석마운드가 손상된 케이슨식 방파제의 진동기반 구조건전성 모니터링, 한국해양공학회지, 24(1), 90-98.
  4. Cho, S., Yun, C.B., Lynch, J.P., Zimmerman, A.T., Spencer B.F. and Nagayama, T. (2008). Smart wireless sensor technology for structural health monitoring of civil structures. Steel Structures, 8, 267-275.
  5. Farrar, C.R. (2001). Historical overview of structural health monitoring. Lecture Notes on Structural Health Monitoring Using Statistical Pattern Recognition, Los Alamos Dynamics, Los Alamos, NM.
  6. Illinois Structural Health Monitoring Project (2010), Available from:
  7. Kim, J.T., Na, W.B., Ryu, Y.S., Park, J.H. and Lee, J.M. (2008). Vibration-Based Damage Monitoring Algorithm for Prestress- Loss in PSC Girder Bridges, Proceedings of SPIE, 6932, San Diego, CA.
  8. Kurata, N., Spencer, B.F. and Ruiz-Sandoval M. (2005). Risk monitoring of buildings with wireless sensor networks, Structural Control and Health Monitoring, 12, 315-327. https://doi.org/10.1002/stc.73
  9. Lynch, J.P., Wang, W., Loh, K.J., Yi, J.H. and Yun, C.B. (2006). Performance monitoring of the Geumdang Bridge using a dense network of high-resolution wireless sensors. Smart Materials and Structures, 15, 1561-1575. https://doi.org/10.1088/0964-1726/15/6/008
  10. Lynch, J.P., Law, K.H., Kiremidjian, A.S., Carryer. E., Farrar, C.R., Sohn, H., Allen, D.W., Nadler, B., and Wait, J.R. (2004). Design and performance validation of a wireless sensing unit for structural monitoring applications, Structural Engineering and Mechanics, 17(3-4), 393-408. https://doi.org/10.12989/sem.2004.17.3_4.393
  11. Nagayama, T. (2007). Structural health monitoring using smart sensors. Ph.D Dissertation, University of Illinois at Urbana-Champaign, UC.
  12. Nagayama, T., Spencer, B.F. and Rice, J.A. (2009). Autonomous decentralized structural health monitoring using smart sensors. Structural Control and Health Monitoring, 16, 842-859.
  13. Park, J.H., Kim, J.T., Hong, D.S., Mascarenas, D., Lynch, J.P. (2010). Autonomous smart sensor nodes for global and local damage detection of prestressed concrete bridges based on accelerations and impedance measurements. Smart Structures and Systems, 6(5-6), 711-730. https://doi.org/10.12989/sss.2010.6.5_6.711
  14. Rice, J.A. and Spencer, B.F. (2008). Structural Health Monitoring Sensor Development for the Imote2 Platform. Proceedings of SPIE, 6932, San Diego, CA.
  15. Sazonov, E., Jha, R., Janoyan, K., Krishnamurthy, V., Fuchs, M. and Cross, K. (2006). Wireless intelligent sensor and actuator network (WISAN): a scalable ultra-low-power platform for structural health monitoring, Proceedings of SPIE, 6177, San Diego, CA.
  16. Sohn, H., Farrar, C.R., Hemerz, F.M., Shunk, D.D., Stinemates, D.W. and Nadler, B.R. (2003). A review of structural health monitoring literature: 1996-2001. Los Alamos National Laboratory Report, LA-13976-MS, Los Alamos, NM.
  17. Spencer, B.F., Ruiz-Sandoval, M.E. and Kurata, N. (2004). Smart sensing technology: opportunities and challenges. Structural Control and Health Monitoring, 11, 349-368. https://doi.org/10.1002/stc.48
  18. Straser, E.G. and Kiremidjian, A.S. (1998). A modular, wireless damage monitoring system for structure. Technical Report 128, John A. Blume Earthquake Engineering Center, Stanford University, Stanford, CA.
  19. Yang, Z., Elgamal, A., Abdoun, T., and Lee, C.J. (2001). A numerical study of lateral spreading behind a caisson-type quay wall, Proceedings of Fourth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics and Symposium, San Diego, CA.

Cited by

  1. Development of Structure Dynamic Characteristics Analysis System Prototype using Image Processing Technique vol.16, pp.3, 2016, https://doi.org/10.5392/JKCA.2016.16.03.011
  2. Development of a Cloud Computing-Based Pier Type Port Structure Stability Evaluation Platform Using Fiber Bragg Grating Sensors vol.18, pp.6, 2018, https://doi.org/10.3390/s18061681