• 제목/요약/키워드: Smart Monitoring Systems

검색결과 889건 처리시간 0.022초

A critical comparison of reflectometry methods for location of wiring faults

  • Furse, Cynthia;Chung, You Chung;Lo, Chet;Pendayala, Praveen
    • Smart Structures and Systems
    • /
    • 제2권1호
    • /
    • pp.25-46
    • /
    • 2006
  • Aging wiring in buildings, aircraft and transportation systems, consumer products, industrial machinery, etc. is among the most significant potential causes of catastrophic failure and maintenance cost in these structures. Smart wire health monitoring can therefore have a substantial impact on the overall health monitoring of the system. Reflectometry is commonly used for locating faults on wire and cables. This paper compares Time domain reflectometry (TDR), frequency domain reflectometry (FDR), mixed signal reflectometry (MSR), sequence time domain reflectometry (STDR), spread spectrum time domain reflectometry (SSTDR) and capacitance sensors in terms of their accuracy, convenience, cost, size, and ease of use. Advantages and limitations of each method are outlined and evaluated for several types of aircraft cables. The results in this paper can be extrapolated to other types of wire and cable systems.

Bridge safety monitoring based-GPS technique: case study Zhujiang Huangpu Bridge

  • Kaloop, Mosbeh R.
    • Smart Structures and Systems
    • /
    • 제9권6호
    • /
    • pp.473-487
    • /
    • 2012
  • GPS has become an established technique in structural health monitoring. This paper presents the application of an on-line GPS RTK system on the Zhujiang Huangpu Bridge (China) for monitoring bridge deck and towers movements. In this study, both the form and functions of movements of the deck and towers of the bridge under affecting loads were monitored in lateral, longitudinal and vertical directions. Such movements were described in time and frequency domains by determining the trend, torsion, periodical of the series using probability density function (PDF). The results of the time series GPS data are practical and useful to bridge health monitoring.

Application of structural health monitoring in civil infrastructure

  • Feng, M.Q.
    • Smart Structures and Systems
    • /
    • 제5권4호
    • /
    • pp.469-482
    • /
    • 2009
  • The emerging sensor-based structural health monitoring (SHM) technology has a potential for cost-effective maintenance of aging civil infrastructure systems. The author proposes to integrate continuous and global monitoring using on-structure sensors with targeted local non-destructive evaluation (NDE). Significant technical challenges arise, however, from the lack of cost-effective sensors for monitoring spatially large structures, as well as reliable methods for interpreting sensor data into structural health conditions. This paper reviews recent efforts and advances made in addressing these challenges, with example sensor hardware and health monitoring software developed in the author's research center. The hardware includes a novel fiber optic accelerometer, a vision-based displacement sensor, a distributed strain sensor, and a microwave imaging NDE device. The health monitoring software includes a number of system identification methods such as the neural networks, extended Kalman filter, and nonlinear damping identificaiton based on structural dynamic response measurement. These methods have been experimentally validated through seismic shaking table tests of a realistic bridge model and tested in a number of instrumented bridges and buildings.

Hybrid acceleration-impedance sensor nodes on Imote2-platform for damage monitoring in steel girder connections

  • Kim, Jeong-Tae;Park, Jae-Hyung;Hong, Dong-Soo;Ho, Duc-Duy
    • Smart Structures and Systems
    • /
    • 제7권5호
    • /
    • pp.393-416
    • /
    • 2011
  • Hybrid acceleration-impedance sensor nodes on Imote2-platform are designed for damage monitoring in steel girder connections. Thus, the feasibility of the sensor nodes is examined about its performance for vibration-based global monitoring and impedance-based local monitoring in the structural systems. To achieve the objective, the following approaches are implemented. First, a damage monitoring scheme is described in parallel with global vibration-based methods and local impedance-based methods. Second, multi-scale sensor nodes that enable combined acceleration-impedance monitoring are described on the design of hardware components and embedded software to operate. Third, the performances of the multi-scale sensor nodes are experimentally evaluated from damage monitoring in a lab-scaled steel girder with bolted connection joints.

농작물 생육 관리를 위한 스마트 멀티센서 및 환경 모니터링 시스템 (Smart Multi-Sensor and Environment Monitoring System for Agriculture Growth Management)

  • 김영민;강의선
    • 한국콘텐츠학회논문지
    • /
    • 제17권12호
    • /
    • pp.138-147
    • /
    • 2017
  • 본 논문에서는 농작물의 생육 관리를 위하여 농작물에 설치된 센서 정보를 수집하고 모니터링 할 수 있는 스마트 멀티 센서와 환경 모니터링 시스템 소개하고자 한다. 기존의 농작물 모니터링 시스템에서는 각 센서의 정보를 취득하기 위해 센서를 종류별로 농작물에 설치하였다. 이 과정에서 각 센서들의 설치 비용이 발생하며 센서 설치 위치를 수동으로 설정해야 하는 번거로움이 있었다. 따라서 본 논문에서는 센서의 설치 비용을 최소화하기 위하여 센서들을 단일화한 스마트 멀티 센서를 설계 및 구현하였고 RFID 통신을 이용하여 설치된 스마트 멀티 센서의 위치 정보 및 센서 정보를 모니터링 할 수 있도록 설계하였다.

Data-Based Monitoring System for Smart Kitchen Farm

  • Yoon, Ye Dong;Jang, Woo Sung;Moon, So Young;Kim, R. Young Chul
    • International journal of advanced smart convergence
    • /
    • 제11권2호
    • /
    • pp.211-218
    • /
    • 2022
  • Pandemic situations such as COVID-19 can occur supply chain crisis. Under the supply chain crisis, delivering farm products from the farm to the city is also very challenging. Therefore it is essential to prepare food sufficiency people who live in a city. We firmly insist on food self-production/consumption systems in each home. However, since it is impossible to grow high-quality crops without expertise knowledge. Therefore expert system is essential to grow high-quality crops in home. To address this problem, we propose a smart kitchen farm as a data-based monitoring system and platform with ICT convergence technology. Our proposed approach 1) collects data and makes judgments based on expert knowledge for home users, 2) increases product quality of the smart kitchen farms by predicting abnormal/normal crops, and 3) controls each personal home cultivation environment through data-based monitoring within the smart central server. We expect people can cultivate high-quality crops in thir kitchens through this system without expert knowledge about cultivation.

Effectiveness of e-health systems in improving hypertension management and awareness: a systematic review

  • Alotaibi, Mohamed;Ammad uddin, Mohammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권1호
    • /
    • pp.173-187
    • /
    • 2022
  • Recent studies have focused on self-management of hypertension using smart devices (cellular phones, tablets, watches). It has proven to be an effective tool for early detection and control of high Blood Pressure (BP) without affecting patients' daily routines. This systematic review surveys the existing self-monitoring systems, evaluate their effectiveness and compares the different approaches. We investigated the current systems in terms of various attributes, including methods used, sample size, type of investigation, inputs/ outputs, rate of success in controlling BP, group of users with higher response rate and beneficiaries, acceptability, and adherence to the system. We identified some limitations, shortcomings, and gaps in the research conducted recently studying the impact of mobile technology on managing hypertension. These shortcomings can generate future research opportunities and enable it to become more realistic and adaptive. We recommended including more observable factors and human behaviors that affect BP. Furthermore, we suggested that vital monitoring/logging and medication tuning are insufficient to improve hypertension control. There is also a need to observe and alter patient behavior and lifestyles.

Thermal imaging and computer vision technologies for the enhancement of pig husbandry: a review

  • Md Nasim Reza;Md Razob Ali;Samsuzzaman;Md Shaha Nur Kabir;Md Rejaul Karim;Shahriar Ahmed;Hyunjin Kyoung;Gookhwan Kim;Sun-Ok Chung
    • Journal of Animal Science and Technology
    • /
    • 제66권1호
    • /
    • pp.31-56
    • /
    • 2024
  • Pig farming, a vital industry, necessitates proactive measures for early disease detection and crush symptom monitoring to ensure optimum pig health and safety. This review explores advanced thermal sensing technologies and computer vision-based thermal imaging techniques employed for pig disease and piglet crush symptom monitoring on pig farms. Infrared thermography (IRT) is a non-invasive and efficient technology for measuring pig body temperature, providing advantages such as non-destructive, long-distance, and high-sensitivity measurements. Unlike traditional methods, IRT offers a quick and labor-saving approach to acquiring physiological data impacted by environmental temperature, crucial for understanding pig body physiology and metabolism. IRT aids in early disease detection, respiratory health monitoring, and evaluating vaccination effectiveness. Challenges include body surface emissivity variations affecting measurement accuracy. Thermal imaging and deep learning algorithms are used for pig behavior recognition, with the dorsal plane effective for stress detection. Remote health monitoring through thermal imaging, deep learning, and wearable devices facilitates non-invasive assessment of pig health, minimizing medication use. Integration of advanced sensors, thermal imaging, and deep learning shows potential for disease detection and improvement in pig farming, but challenges and ethical considerations must be addressed for successful implementation. This review summarizes the state-of-the-art technologies used in the pig farming industry, including computer vision algorithms such as object detection, image segmentation, and deep learning techniques. It also discusses the benefits and limitations of IRT technology, providing an overview of the current research field. This study provides valuable insights for researchers and farmers regarding IRT application in pig production, highlighting notable approaches and the latest research findings in this field.

Implementation of Wireless PGN Analyzer for ISOBUS network

  • Tumenjargal, Enkhbaatar;Badarch, Luubaatar;Lee, Kangsan;Ham, Woonchul;Doopalam, Enkhzul;Togooch, Amartuvshin
    • 스마트미디어저널
    • /
    • 제4권2호
    • /
    • pp.46-54
    • /
    • 2015
  • Communication between ECUs (Electronic Control Units) in agricultural machineries tends to use IS011783 widely, that is PGN (Parameter Group Number) based communication protocol lays on CAN protocol by altering its identifier part. Messages in line are transferred and received between ECUs according to ISO11783 standard. This paper discusses about design of wireless monitoring system. We used an ARM Cortex-M3 microcontroller embedded development board and marvel8686 wireless module. The wireless ISOBUS monitoring system, attached to communication line, reads messages, interpret them, and display them on the screen in easily comprehendible form. It can be used to generate messages and monitor the traffic on physical bus systems. The monitoring system connected to ECUs, monitor and simulate real traffic of communication and functionality of the ECUs. In order to support our work, we have implemented the monitoring tool. The development consists of two parts: GUI of the application and firmware level programming. Hence the monitoring system is attached to the communication line and equipped by Wi-Fi module; farmer/dispatcher in a farm monitors all messages in communication line on personal computer and smart device.