• 제목/요약/키워드: Smart Manufacturing Innovation

Search Result 77, Processing Time 0.026 seconds

A Human-Centric Approach for Smart Manufacturing Adoption: An Empirical Study

  • Ying PAN;Aidi AHMI;Raja Haslinda RAJA MOHD ALI
    • Journal of Distribution Science
    • /
    • v.22 no.1
    • /
    • pp.37-46
    • /
    • 2024
  • Purpose: This study aims to address the overlooked micro-level aspects within Smart Manufacturing (SM) research, rectifying the misalignment in manufacturing firms' estimation of their technological adoption capabilities. Drawing upon the Social-Technical Systems (STS) theory, this paper utilises innovation capability as a mediating variable, constructing a human-centric organizational model to bridge this research gap. Research design, data and methodology: This study collected data from 233 Chinese manufacturing firms via online questionnaires. Introducing innovation capability as a mediating variable, it investigates the impact of social-technical system dimensions (work design, social subsystems, and technical subsystems) on SM adoption willingness. Smart PLS 4.0 was employed for data analysis, and Structural Equation Modelling (SEM) validated the theoretical model's assumptions. Results: In direct relationships, social subsystems, technical subsystems, and work design positively influence firms' innovation capabilities, which, in turn, positively impact SM adoption. However, innovation capability does not mediate the relationship between technical subsystems and SM adoption. Conclusions: This study focuses on the internal micro-level of organisational employees, constructing a human-centric framework that emphasises the interaction between organisations and technology. The study fills empirical gaps in Smart Manufacturing adoption, providing organisations with a means to examine the integration of employees and the organisational social-technical system.

Smart Factory Policy Measures for Promoting Manufacturing Innovation (제조혁신 촉진을 위한 스마트공장 정책방안)

  • Park, Jaesung James;Kang, Jae Won
    • Korean small business review
    • /
    • v.42 no.2
    • /
    • pp.117-137
    • /
    • 2020
  • We examine the current status of smart factory deployment and diffusion programs in Korea, and seek to promote manufacturing innovation from the perspective of SMEs. The main conclusions of this paper are as follows. First, without additional market creation and supply chain improvement, smart factories are unlikely to raise profitability leading to overinvestment. Second, new business models need to connect "manufacturing process efficiency" with "R&D" and "marketing" in value chain in smart factories. Third, when introducing smart factories, we need to focus on the areas where process-embedded technology is directly linked to corporate competitiveness. Based on the modularity-maturity matrix (Pisano and Shih, 2012) and the examples of U.S. Manufacturing Innovation Institute (MII), we establish the new smart factory deployment policy measures as follows. First, we shift our smart factory strategy from quantitative expansion to qualitative upgrading. Second, we promote by each sector the formation of industrial commons that help SMEs to jointly develop R&D, exchange standardized data and practices, and facilitate supplier-led procurement system. Third, to implement new technology and business models, we encourage partnerships, collaborations, and M&As between conventional SMEs and start-ups and business ventures. Fourth, the whole deployment process of smart factories is indexed in detail to identify the problems and provide appropriate solutions.

A Study on Big Data Analytics Services and Standardization for Smart Manufacturing Innovation

  • Kim, Cheolrim;Kim, Seungcheon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.91-100
    • /
    • 2022
  • Major developed countries are seriously considering smart factories to increase their manufacturing competitiveness. Smart factory is a customized factory that incorporates ICT in the entire process from product planning to design, distribution and sales. This can reduce production costs and respond flexibly to the consumer market. The smart factory converts physical signals into digital signals, connects machines, parts, factories, manufacturing processes, people, and supply chain partners in the factory to each other, and uses the collected data to enable the smart factory platform to operate intelligently. Enhancing personalized value is the key. Therefore, it can be said that the success or failure of a smart factory depends on whether big data is secured and utilized. Standardized communication and collaboration are required to smoothly acquire big data inside and outside the factory in the smart factory, and the use of big data can be maximized through big data analysis. This study examines big data analysis and standardization in smart factory. Manufacturing innovation by country, smart factory construction framework, smart factory implementation key elements, big data analysis and visualization, etc. will be reviewed first. Through this, we propose services such as big data infrastructure construction process, big data platform components, big data modeling, big data quality management components, big data standardization, and big data implementation consulting that can be suggested when building big data infrastructure in smart factories. It is expected that this proposal can be a guide for building big data infrastructure for companies that want to introduce a smart factory.

Manufacturing Innovation Trends for Flagship Industries Intellectualization (주력산업 지능화를 위한 제조 혁신 기술 동향)

  • H.K. Kim;J.M. Kim;D.K. Shon;Y.S. Hwang;T.H. Yoon;H.K. Choi;D.S. Yoo
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.75-83
    • /
    • 2023
  • Smart manufacturing in Industry 4.0 is developing toward autonomous manufacturing as a last-mile technology. We investigate development trends in manufacturing innovation technologies, review major industrial intelligence projects currently carried out at ETRI, and infer directions of future technology developments.

The Design of Application Model using Manufacturing Data in Protection Film Process for Smart Manufacturing Innovation (스마트 제조혁신을 위한 보호필름 공정 제조데이터의 활용모델 설계)

  • Cha, ByungRae;Park, Sun;Lee, Seong-ho;Shin, Byeong-Chun;Kim, JongWon
    • Smart Media Journal
    • /
    • v.8 no.3
    • /
    • pp.95-103
    • /
    • 2019
  • The global manufacturing industry has reached the limit to growth due to a long-term recession, the rise of labor cost and raw material. As a solution to these difficulties, we promote the 4th Industry Revolution based on ICT and sensor technology. Following this trend, this paper proposes the design of a model using manufacturing data in the protection film process for smart manufacturing innovation. In the protective film process, the manufacturing data of temperature, pressure, humidity, and motion and thermal image are acquired by various sensors for the raw material blending, stirring, extrusion, and inspection processes. While the acquired manufacturing data is stored in mass storage, A.I. platform provides time-series image analysis and its visualization.

The Study on Improvement of the Digital Transformation of Small and Medium-Sized Manufacturing Industries through Foreign Countries (주요국 정책을 통한 중소 제조기업의 디지털 전환 추진 방향 모색)

  • An, Jung-in
    • Journal of Venture Innovation
    • /
    • v.5 no.4
    • /
    • pp.109-115
    • /
    • 2022
  • As the 4th industrial revolution progresses, foreign countries are promoting smart manufacturing innovation through digital transformation as a priority task early on to secure a competitive edge in the manufacturing industry. In response, the Korean government is also promoting a policy to enhance the competitiveness of small and medium-sized manufacturing companies by promoting digital transformation in the corporate sector to meet the global trend of the 4th industrial revolution era. Manufacturing powerhouses such as Germany and Japan see manufacturing as a key sector in digital transformation and are leading related policies, while emerging countries such as China are also promoting manufacturing innovation strategies such as building digital infrastructure and creating a digital innovation ecosystem. Korea is promoting the 'Korean-style smart factory dissemination and expansion strategy' by transforming Germany's manufacturing innovation strategy for smart factory supply to suit the domestic situation. However, the policy to supply smart factories so far has been conducted with support from individual companies under the leadership of the government, and most of the smart factories are at the basic level, and it is evaluated that there are limitations such as the lack of manpower to operate smart factories. In addition, while the current policy focuses on expanding the supply of smart factories in SMEs, it is necessary to establish a smart manufacturing system through linkages between large and small businesses in order to achieve the original goal of establishing a smart manufacturing system. Therefore, it can be said that from the standpoint of small and medium-sized enterprises (SMEs), who are consumers of smart factories, it can be said that the digital transformation policy can achieve the expected results only when appropriate incentives are provided for the introduction of smart factories in a situation where management resources such as funds, technology, and human resources are lacking. In addition, it is judged that the uncertainty of the performance of digital investment always exists, and as long as large and small companies are maintained as an ecosystem of delivery and subcontracting, there is very little incentive for small and medium-sized manufacturing companies to voluntarily invest in or advance digital transformation. Therefore, the digital transformation policy of small and medium-sized manufacturing companies in the future has practical significance in that it suggests that there is a need to seek ways to attract SMEs' digital-related voluntary investment.

Framework for Assessing Maturity of Future Manufacturing System (미래 제조시스템 성숙도평가 프레임워크)

  • Lee, Jeongcheol;Chang, Tai-Woo;Park, Jong-Kyung;Hwang, Gyusun
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.2
    • /
    • pp.165-178
    • /
    • 2019
  • In an environment transformed by smart factories, measuring the current level of the manufacturing system, deriving improvement targets and tasks and increasing the level of manufacturing competitiveness become the basic activities of the company. However, research on the component analysis and maturity assessment to ensure the future competitiveness of the company is in progress and in the early stages. This study analyzed the existing research on various models, development process, and framework for manufacturing system. In addition, we designed a structural model by deriving the components of future manufacturing system through smart factory related maturity assessment studies. We designed a meta-model that includes an assesment model and a transformation model, and derived the framework development process to propose an integrated framework for the maturity assessment of the future manufacturing system. We verified it by applying it into an actual evaluation project of smart factory.

The Implementation of Smart Factories: Empirical Evidence from Korean Small and Medium-Sized Enterprises (스마트팩토리 도입 영향요인에 관한 실증연구: 우리나라 중소제조기업을 중심으로)

  • Chung, Jiyoon
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.2
    • /
    • pp.79-94
    • /
    • 2022
  • Purpose - The purpose of this study is to examine firm-level attributes related to Korean manufacturing small and medium-sized enterprises' (SMEs') decisions to implement smart factories. Design/methodology/approach - This study uses the provided by the Ministry of SMEs and Startups of Korea and the Korea Federation of SMEs. Manufacturing SMEs' decisions to implement smart factories in 2018-2019 were analyzed using multinomial logit and ordered logit models. Findings - The findings of this study suggest that firms' decisions to implement smart factories were positively related to firm size, R&D intensity, international market scope, and transactional relationships with customers. However, smart factory implementation decisions were not related to firm age and CEO gender. Research implications or Originality - This study illuminates firm-level attributes that may drive organizational innovation in the era of Industry 4.0 and thus contributes to the innovation adoption literature. This study also contributes to growing research on smart factories by analyzing the actual, progressive decisions to implement smart factories, as opposed to perceived intentions to implement them.

Support Project for the Establishment of a Smart Factory for the Win-win between Large and Small Businesses Performance Analysis of the Adopting Company (대·중소 상생형 스마트공장 구축 지원 사업 도입기업에 대한 성과분석)

  • Seo, Hongeil;Kim, Taesung
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.2
    • /
    • pp.135-142
    • /
    • 2022
  • The smart factory is an important system that can reduce defects, maximize productivity, and respond to customer needs, from the labor-intensive era of traditional small and medium-sized manufacturing companies through the automation era to CPS using ICT. However, small and medium-sized manufacturers often fall short of the basic stage due to economic and environmental constraints, and there are many companies that do not even recognize the concept of a smart factory. In this situation, to expand the smart factory of small and medium-sized enterprises, the project to support the establishment of a smart factory for the win-win between large and small enterprises. The win-win smart factory construction support project provides a customized differentiation program support project according to the size and level of the company for all domestic manufacturing SMEs regardless of whether or not they are dealing with Samsung. In this study, we analyze the construction status and introduction performance of companies participating in the win-win smart factory support project to find out whether they have been helpful in management and to find efficient ways to improve support policies, and to suggest the direction of continuous support projects to improve the manufacturing competitiveness of SMEs in the future.

Effects of Smart Factory Quality Characteristics & Innovative Activities on Business Performance : Mediating Effect of Using Smart Factory

  • CHO, Ik-Jun;KIM, Jin-Kwon;AHN, Tony-DongHui;YANG, Hoe-Chang
    • The Journal of Economics, Marketing and Management
    • /
    • v.8 no.3
    • /
    • pp.23-36
    • /
    • 2020
  • Purpose: The purpose of this study is to identify the strategic direction of organizations and their employees to efficiently utilize smart factories and enhance business performance among Korean manufacturing companies. Research design, data, and methodology: We derived a structured research model to check the mediated effect of utilization of smart factory between the characteristics of smart factory and the innovation activities. Results: Quality characteristics of smart factory and Innovation activities were all found to have a statistically significant effect on utilization of smart factory, utilization of smart factory was found to have a statistically significant effect on the business performance. And it has been shown that the utilization of smart factory is partially mediated relative to the quality characteristics of smart factory and business performance and relative to innovation activities and business performance. Conclusions: Smart factory builders can reflect the areas that affect utilization of the smart factory in their strategies by considering the quality characteristics of the smart factory and innovation Activities. Therefore, smart factory builders can identify the quality characteristics of smart factory and reflect them in the process and analyze active utilize measures through the innovative activities of the employees of the organization, thereby influencing business performance.