• Title/Summary/Keyword: Smart Manufacturing

Search Result 720, Processing Time 0.025 seconds

Research about the IoT based on Korean style Smart Factory Decision Support System Platform - based on Daegu/Kyeongsangbuk-do region component manufacture companies (IoT 기반의 한국형 Smart Factory 의사결정시스템 플랫폼에 대한 연구 - 대구/경북 부품소재 기업을 중심으로)

  • Sagong, Woon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • The current economic crisis is making new demands on manufacturing industry, in particular, in terms of the flexibility and efficiency of production processes. This requires production and administrative processes to be meshed with each other by means of IT systems to optimise the use and capacity utilisation of machines and lines but also to be able to respond rapidly to wrong developments in production and thus to minimise adverse impacts on the business. The future scenario of the "smart factory" represents the zenith of this development. The factory can be modified and expanded at will, combines all components from different manufacturers and enables them to take on context-related tasks autonomously. Integrated user interfaces will still be required at most for basic functionalities. The complex control operations will run wirelessly and ad hoc via mobile terminals such as PDAs or smartphones. The comnination of IoT, and Big Data optimisation is bringing about huge opportunities. these processes are not just limited to manufacturing, anywhere a supply chain environment exists can benefit from information provided by linked devices and access to big data to inform their decision support. Building a smart factory with smart assets at its core means reaching those desired new levels of productivity and efficiency. It means smart products that leverage advanced traceability, connectivity and intelligence. For businesses, it means being able to address the talent crunch through more autonomous. In a Smart Factory, machinery and equipment will have the ability to improve processes through self-optimization and autonomous decision-making.

Effects of Smart Factory Quality Characteristics & Innovative Activities on Business Performance : Mediating Effect of Using Smart Factory

  • CHO, Ik-Jun;KIM, Jin-Kwon;AHN, Tony-DongHui;YANG, Hoe-Chang
    • The Journal of Economics, Marketing and Management
    • /
    • v.8 no.3
    • /
    • pp.23-36
    • /
    • 2020
  • Purpose: The purpose of this study is to identify the strategic direction of organizations and their employees to efficiently utilize smart factories and enhance business performance among Korean manufacturing companies. Research design, data, and methodology: We derived a structured research model to check the mediated effect of utilization of smart factory between the characteristics of smart factory and the innovation activities. Results: Quality characteristics of smart factory and Innovation activities were all found to have a statistically significant effect on utilization of smart factory, utilization of smart factory was found to have a statistically significant effect on the business performance. And it has been shown that the utilization of smart factory is partially mediated relative to the quality characteristics of smart factory and business performance and relative to innovation activities and business performance. Conclusions: Smart factory builders can reflect the areas that affect utilization of the smart factory in their strategies by considering the quality characteristics of the smart factory and innovation Activities. Therefore, smart factory builders can identify the quality characteristics of smart factory and reflect them in the process and analyze active utilize measures through the innovative activities of the employees of the organization, thereby influencing business performance.

Sensors, smart structures technology and steel structures

  • Liu, Shih-Chi
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.517-530
    • /
    • 2008
  • This paper deals with civil infrastructures in general, sensor and smart structure technology, and smart steel structures in particular. Smart structures technology, an integrated engineering field comprising sensor technology, structural control, smart materials and structural health monitoring, could dramatically transform and revolutionize the design, construction and maintenance of civil engineering structures. The central core of this technology is sensor and sensor networks that provide the essential data input in real time for condition assessment and decision making. Sensors and robust monitoring algorithms that can reliably detect the occurrence, location, and severity of damages such as crack and corrosion in steel structures will lead to increased levels of safety for civil infrastructure, and may significantly cut maintenance or repair cost through early detection. The emphasis of this paper is on sensor technology with a potential use in steel structures.

A Study on the Actual Condition of Construction in Smart Factory by Small and Medium-sized Manufacturing Companies (중소 제조업체의 스마트공장 인지정도에 따른 구축 현황 분석)

  • Sung, Changyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.182-187
    • /
    • 2019
  • With the transition to the era of the Fourth Industrial Revolution, movements of overall change, including technology, society and culture, are becoming increasingly diverse. Among these, even the manufacturing industry, which can be regarded as Korea's leading core industry, is also seeing great changes centered on smart factories. Expert analyses and corporate opinions suggest that smart factories are needed to be competitive in the manufacturing sector. In this study, the impact of small and medium manufacturers' awareness regarding smart factories was analyzed through a survey. The results showed that the need for smart plant construction and the degree of awareness regarding this was very high. In a survey of the planned or implemented level, more companies were expected to deploy, implement, and reduce instruments than those that did not have a plan to build smart factories. The main difficulties involved in deployment were funding problems and the results of the preliminary review phase were derived in order to successfully build a smart factory. Therefore, financial support was most needed to build smart factories, and a need to upgrade the support amount, match it with suppliers for a preliminary review and expand consulting was found.

A Study on the Limits of Manufacturing Innovation and Policy Direction of SMEs in the 4th Industrial Revolution : Focusing on the Limitations and Examples of Pohang SME's Smart Factory Introduction (4차 산업혁명시대 지역 중소기업의 제조혁신 한계와 스마트공장 정책 방향성 연구: 포항지역 중소기업의 스마트공장 조사를 중심으로)

  • Kim, Eunyoung;Park, Munsu
    • Journal of Science and Technology Studies
    • /
    • v.18 no.2
    • /
    • pp.269-306
    • /
    • 2018
  • Through this study, it is aimed to derive the policy direction considering the characteristics of the present Smart Factory, the industrial condition of Pohang area, and the promotion field. Secondly, the questionnaire data of the regional enterprises will prepare for the improvement of the industrial structure and the implications for efficiency, and preparation for regional preparation and industrial changes in preparation for the next generation of production revolution. The construction of Smart Factory in Pohang can be divided into two major directions. First, it is analyzed that smart factory pilot projects are highly needed, focusing on competitive medical precision manufacturing field among the SMEs in the region, primary metal and nonmetal manufacturing industries, and other machinery fields. In addition, local SMEs are willing to introduce smart factories for reasons of quality improvement and cost reduction, and it is confirmed that they will actively promote employee training and expertise if they can upgrade continuously.

A Comparative Study of Smart Manufacturing Innovation Supply Industry in Germany and Korea (독일과 한국의 스마트 제조혁신 전략에 대한 비교분석 및 시사점 - 양국의 공급산업 전략을 중심으로 -)

  • Sang-Jin Lee;Yun-Hyeok Choi;Jae Kyu Myung
    • Journal of Practical Engineering Education
    • /
    • v.14 no.3
    • /
    • pp.601-608
    • /
    • 2022
  • This study examines the current status of smart manufacturing innovation policies in Germany and Korea, compares and analyzes the supply industry strategies of both countries, and suggests the direction for Korea's smart manufacturing innovation supply industry. Germany's supply industry strategy aims to strengthen the market dominance of domestic suppliers through high technology, compatibility, and high reliability based on reference for global demanding companies. On the other hand, the Korea's supply industry strategy remains at the level improvement of the demanding companies by stage, so it is time to take a long-term and consistent response with the goal of implementing smartization at the advanced level. By referring to Germany's supply industry strategy for the advancement of smart factories, it was intended to help in establishing government support policies and supplier strategies. In addition, based on the analysis results of the supply industry strategies of both countries, improvement measures for the advancement of Korea's smart factories were presented. Ultimately, the contents of this study can be used as basic data for policy establishment to strengthen the industrial competitiveness of Korea's small and medium-sized suppliers.

Design for Smart Safety Management System: from Worker and Mobile Equipment Perspectives (시스템엔지니어링 기반의 스마트 안전관리 시스템설계: 작업자와 이동 장비를 중심으로)

  • Kim, Hyoung Min;Yoon, Sung Jae;Hong, Dae Guen;Suh, Suk-Hwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.11 no.2
    • /
    • pp.41-49
    • /
    • 2015
  • Industrial safety is one of the crucial agenda for Government as well as Manufacturing Industry. To cope with the needs, a great deal of policies and technical implementation have been proposed and implemented. With a great increasing attention on the Industry 4.0 and Smart Factory, industrial safety has received as a crucial agenda by the manufacturing industry in particular. Up until now, almost all of them have been made from the environmental aspects, rather than operator or workers. In this paper, we present our research results how to increase the workers' safety via smart factory technology, such as IoT and CPS. Our approach has been to see the problem from SE perspectives, to draw the real issues from the various stakeholders, and define how to solve the problem based on the emerging technologies. The developed systems can give conceptual framework for the 'smart' industrial safety system by providing solution architecture for how to monitor the location of workers, and moving equipments, and generate solutions how to avoid safety problems between them if detected.

Study on the Photoelectric Composite Cable for Hybrid Interconnection Implementation (Hybrid 인터커넥션 구현을 위한 광전 복합케이블 제작에 관한 연구)

  • Kim, Jae-Yeol;You, Kwan-Jong;Park, Ryeok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.138-145
    • /
    • 2017
  • With the increasing use of smart electronic devices, the size of the related I/O interface market is increasing rapidly. Demand is also growing for the continuous increase of data and video signals-such as faster data processing speed and data storage capacity-in the smart electronic device input/output interface market. Currently, the POF hybrid cable used in the smart electronic device input / output interface market cannot transmit over a long distance because the optical loss is too large, and the GOF hybrid cable is both vulnerable to bending and other sudden outside changes, and expensive. Therefore, in this study, the design and fabrication of a GOF hybrid cable and fiber guide were carried out in order to develop a cable which can easily withstand external impact, has low optical losses, and meets the demand for continuous data and video signal increase in the smart electronic device input / output interface market.

Automatic detection system for surface defects of home appliances based on machine vision (머신비전 기반의 가전제품 표면결함 자동검출 시스템)

  • Lee, HyunJun;Jeong, HeeJa;Lee, JangGoon;Kim, NamHo
    • Smart Media Journal
    • /
    • v.11 no.9
    • /
    • pp.47-55
    • /
    • 2022
  • Quality control in the smart factory manufacturing process is an important factor. Currently, quality inspection of home appliance manufacturing parts produced by the mold process is mostly performed with the naked eye of the operator, resulting in a high error rate of inspection. In order to improve the quality competition, an automatic defect detection system was designed and implemented. The proposed system acquires an image by photographing an object with a high-performance scan camera at a specific location, and reads defective products due to scratches, dents, and foreign substances according to the vision inspection algorithm. In this study, the depth-based branch decision algorithm (DBD) was developed to increase the recognition rate of defects due to scratches, and the accuracy was improved.