• Title/Summary/Keyword: Smart Learning System

Search Result 687, Processing Time 0.024 seconds

A Study on the UIC(University & Industry Collaboration) Model for Global New Business (글로벌 사업 진출을 위한 산학협력 협업촉진모델: 경남 G대학 GTEP 사업 실험사례연구)

  • Baek, Jong-ok;Park, Sang-hyeok;Seol, Byung-moon
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.10 no.6
    • /
    • pp.69-80
    • /
    • 2015
  • This can be promoted collaboration environment for the system and the system is very important for competitiveness, it is equipped. If so, could work in collaboration with members of the organization to promote collaboration what factors? Organizational collaboration and cooperation of many people working, or worth pursuing common goals by sharing information and processes to improve labor productivity, defined as collaboration. Factors that promote collaboration are shared visions, the organization's principles and rules that reflect the visions, on-line system developments, and communication methods. First, it embodies the vision shared by the more sympathetic members are active and voluntary participation in the activities of the organization can be achieved. Second, the members are aware of all the rules and principles of a united whole is accepted and leads to good performance. In addition, the ability to share sensitive business activities for self-development and also lead to work to make this a regular activity to create a team that can collaborate to help the environment and the atmosphere. Third, a systematic construction of the online collaboration system is made efficient and rapid task. According to Student team and A corporation we knew that Cloud services and social media, low-cost, high-efficiency services could achieve. The introduction of the latest information technology changes, the members of the organization's systems and active participation can take advantage of continuing education must be made. Fourth, the company to inform people both inside and outside of the organization to communicate actively to change the image of the company activities, the creation of corporate performance is very important to figure. Reflects the latest trend to actively use social media to communicate the effort is needed. For development of systematic collaboration promoting model steps to meet the organizational role. First, the Chief Executive Officer to make a firm and clear vision of the organization members to propagate the faith, empathy gives a sense of belonging should be able to have. Second, middle managers, CEO's vision is to systematically propagate the organizers rules and principles to establish a system would create. Third, general operatives internalize the vision of the company stating that the role of outside companies must adhere. The purpose of this study was well done in collaboration organizations promoting factors for strategic alignment model based on the golden circle and collaboration to understand and reflect the latest trends in information technology tools to take advantage of smart work and business know how student teams through case analysis will derive the success factors. This is the foundation for future empirical studies are expected to be present.

  • PDF

Development of CCTV Cooperation Tracking System for Real-Time Crime Monitoring (실시간 범죄 모니터링을 위한 CCTV 협업 추적시스템 개발 연구)

  • Choi, Woo-Chul;Na, Joon-Yeop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.546-554
    • /
    • 2019
  • Typically, closed-circuit television (CCTV) monitoring is mainly used for post-processes (i.e. to provide evidence after an incident has occurred), but by using a streaming video feed, machine-based learning, and advanced image recognition techniques, current technology can be extended to respond to crimes or reports of missing persons in real time. The multi-CCTV cooperation technique developed in this study is a program model that delivers similarity information about a suspect (or moving object) extracted via CCTV at one location and sent to a monitoring agent to track the selected suspect or object when he, she, or it moves out of range to another CCTV camera. To improve the operating efficiency of local government CCTV control centers, we describe here the partial automation of a CCTV control system that currently relies upon monitoring by human agents. We envisage an integrated crime prevention service, which incorporates the cooperative CCTV network suggested in this study and that can easily be experienced by citizens in ways such as determining a precise individual location in real time and providing a crime prevention service linked to smartphones and/or crime prevention/safety information.

The Impact of Organizational Safety Culture on the Resilience Ability : Focused on the Construction Industry (조직의 안전문화가 레질리언스 역량에 미치는 영향 : 건설업을 중심으로)

  • Chu, Chan Ho;An, Kang Min;Baek, Dong Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.73-85
    • /
    • 2021
  • The construction industry is considered to be a fatal accident industry, accounting for 28.5% of the total industrial accidents in 2017, as the number of industrial accidents in the construction industry has steadily increased over the past decade. So it is necessary to consider introducing Resilience Engineering, which is actively applied to risky industries around the world, to drastically reduce construction accidents. Although Resilience Engineering, which has emerged as the next-generation safety management centered on Hollnagel since the 2000s, claims the importance of strengthening Resilience abilities considering organizational structure and culture, most studies focus only on developing evaluation indicators. The purpose of this study is to analyze the impact of an organization's safety culture on its Resilience abilities in the construction industry. Specifically, it conducted empirical analysis on the impact of safety culture consisting of 'communication, leadership and safety systems' on the Resilience abilities(responding ability, monitoring ability, learning ability, anticipating ability), and the mediation relationship between leadership, communication, and safety system. The survey was conducted on construction workers, and an empirical analysis was conducted on the final 154 responses using SPSS 25 and Smart PLS 3. The results showed that the safety system had a significant impact on all Resilience Abilities, and communication had a significant impact on the remaining three except for anticipating ability among Resilience Abilities. On the other hand, leadership has been shown to have a significant impact on anticipating ability only. In the verifying of the mediation relationship between leadership, communication and safety systems, it was found that leadership affects all Resilience abilities by means of safety systems, but communication can only affect responding ability. This study has practical significance in that it suggests the need for policy-level efforts to introduce and apply Resilience Engineering and then expanded the effective safety management assessment of the construction industry in the future. Moreover, the academic implications are important in that the study attempted to expand the academic scope for a paradigm shift in the future as the safety culture has identified its impact on the Resilience abilities.

A Study of Anomaly Detection for ICT Infrastructure using Conditional Multimodal Autoencoder (ICT 인프라 이상탐지를 위한 조건부 멀티모달 오토인코더에 관한 연구)

  • Shin, Byungjin;Lee, Jonghoon;Han, Sangjin;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.57-73
    • /
    • 2021
  • Maintenance and prevention of failure through anomaly detection of ICT infrastructure is becoming important. System monitoring data is multidimensional time series data. When we deal with multidimensional time series data, we have difficulty in considering both characteristics of multidimensional data and characteristics of time series data. When dealing with multidimensional data, correlation between variables should be considered. Existing methods such as probability and linear base, distance base, etc. are degraded due to limitations called the curse of dimensions. In addition, time series data is preprocessed by applying sliding window technique and time series decomposition for self-correlation analysis. These techniques are the cause of increasing the dimension of data, so it is necessary to supplement them. The anomaly detection field is an old research field, and statistical methods and regression analysis were used in the early days. Currently, there are active studies to apply machine learning and artificial neural network technology to this field. Statistically based methods are difficult to apply when data is non-homogeneous, and do not detect local outliers well. The regression analysis method compares the predictive value and the actual value after learning the regression formula based on the parametric statistics and it detects abnormality. Anomaly detection using regression analysis has the disadvantage that the performance is lowered when the model is not solid and the noise or outliers of the data are included. There is a restriction that learning data with noise or outliers should be used. The autoencoder using artificial neural networks is learned to output as similar as possible to input data. It has many advantages compared to existing probability and linear model, cluster analysis, and map learning. It can be applied to data that does not satisfy probability distribution or linear assumption. In addition, it is possible to learn non-mapping without label data for teaching. However, there is a limitation of local outlier identification of multidimensional data in anomaly detection, and there is a problem that the dimension of data is greatly increased due to the characteristics of time series data. In this study, we propose a CMAE (Conditional Multimodal Autoencoder) that enhances the performance of anomaly detection by considering local outliers and time series characteristics. First, we applied Multimodal Autoencoder (MAE) to improve the limitations of local outlier identification of multidimensional data. Multimodals are commonly used to learn different types of inputs, such as voice and image. The different modal shares the bottleneck effect of Autoencoder and it learns correlation. In addition, CAE (Conditional Autoencoder) was used to learn the characteristics of time series data effectively without increasing the dimension of data. In general, conditional input mainly uses category variables, but in this study, time was used as a condition to learn periodicity. The CMAE model proposed in this paper was verified by comparing with the Unimodal Autoencoder (UAE) and Multi-modal Autoencoder (MAE). The restoration performance of Autoencoder for 41 variables was confirmed in the proposed model and the comparison model. The restoration performance is different by variables, and the restoration is normally well operated because the loss value is small for Memory, Disk, and Network modals in all three Autoencoder models. The process modal did not show a significant difference in all three models, and the CPU modal showed excellent performance in CMAE. ROC curve was prepared for the evaluation of anomaly detection performance in the proposed model and the comparison model, and AUC, accuracy, precision, recall, and F1-score were compared. In all indicators, the performance was shown in the order of CMAE, MAE, and AE. Especially, the reproduction rate was 0.9828 for CMAE, which can be confirmed to detect almost most of the abnormalities. The accuracy of the model was also improved and 87.12%, and the F1-score was 0.8883, which is considered to be suitable for anomaly detection. In practical aspect, the proposed model has an additional advantage in addition to performance improvement. The use of techniques such as time series decomposition and sliding windows has the disadvantage of managing unnecessary procedures; and their dimensional increase can cause a decrease in the computational speed in inference.The proposed model has characteristics that are easy to apply to practical tasks such as inference speed and model management.

Development of Mask-RCNN Model for Detecting Greenhouses Based on Satellite Image (위성이미지 기반 시설하우스 판별 Mask-RCNN 모델 개발)

  • Kim, Yun Seok;Heo, Seong;Yoon, Seong Uk;Ahn, Jinhyun;Choi, Inchan;Chang, Sungyul;Lee, Seung-Jae;Chung, Yong Suk
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.3
    • /
    • pp.156-162
    • /
    • 2021
  • The number of smart farms has increased to save labor in agricultural production as the subsidy become available from central and local governments. The number of illegal greenhouses has also increased, which causes serious issues for the local governments. In the present study, we developed Mask-RCNN model to detect greenhouses based on satellite images. Greenhouses in the satellite images were labeled for training and validation of the model. The Mask-RC NN model had the average precision (AP) of 75.6%. The average precision values for 50% and 75% of overlapping area were 91.1% and 81.8%, respectively. This results indicated that the Mask-RC NN model would be useful to detect the greenhouses recently built without proper permission using a periodical screening procedure based on satellite images. Furthermore, the model can be connected with GIS to establish unified management system for greenhouses. It can also be applied to the statistical analysis of the number and total area of greenhouses.

Development of a complex failure prediction system using Hierarchical Attention Network (Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발)

  • Park, Youngchan;An, Sangjun;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.127-148
    • /
    • 2020
  • The data center is a physical environment facility for accommodating computer systems and related components, and is an essential foundation technology for next-generation core industries such as big data, smart factories, wearables, and smart homes. In particular, with the growth of cloud computing, the proportional expansion of the data center infrastructure is inevitable. Monitoring the health of these data center facilities is a way to maintain and manage the system and prevent failure. If a failure occurs in some elements of the facility, it may affect not only the relevant equipment but also other connected equipment, and may cause enormous damage. In particular, IT facilities are irregular due to interdependence and it is difficult to know the cause. In the previous study predicting failure in data center, failure was predicted by looking at a single server as a single state without assuming that the devices were mixed. Therefore, in this study, data center failures were classified into failures occurring inside the server (Outage A) and failures occurring outside the server (Outage B), and focused on analyzing complex failures occurring within the server. Server external failures include power, cooling, user errors, etc. Since such failures can be prevented in the early stages of data center facility construction, various solutions are being developed. On the other hand, the cause of the failure occurring in the server is difficult to determine, and adequate prevention has not yet been achieved. In particular, this is the reason why server failures do not occur singularly, cause other server failures, or receive something that causes failures from other servers. In other words, while the existing studies assumed that it was a single server that did not affect the servers and analyzed the failure, in this study, the failure occurred on the assumption that it had an effect between servers. In order to define the complex failure situation in the data center, failure history data for each equipment existing in the data center was used. There are four major failures considered in this study: Network Node Down, Server Down, Windows Activation Services Down, and Database Management System Service Down. The failures that occur for each device are sorted in chronological order, and when a failure occurs in a specific equipment, if a failure occurs in a specific equipment within 5 minutes from the time of occurrence, it is defined that the failure occurs simultaneously. After configuring the sequence for the devices that have failed at the same time, 5 devices that frequently occur simultaneously within the configured sequence were selected, and the case where the selected devices failed at the same time was confirmed through visualization. Since the server resource information collected for failure analysis is in units of time series and has flow, we used Long Short-term Memory (LSTM), a deep learning algorithm that can predict the next state through the previous state. In addition, unlike a single server, the Hierarchical Attention Network deep learning model structure was used in consideration of the fact that the level of multiple failures for each server is different. This algorithm is a method of increasing the prediction accuracy by giving weight to the server as the impact on the failure increases. The study began with defining the type of failure and selecting the analysis target. In the first experiment, the same collected data was assumed as a single server state and a multiple server state, and compared and analyzed. The second experiment improved the prediction accuracy in the case of a complex server by optimizing each server threshold. In the first experiment, which assumed each of a single server and multiple servers, in the case of a single server, it was predicted that three of the five servers did not have a failure even though the actual failure occurred. However, assuming multiple servers, all five servers were predicted to have failed. As a result of the experiment, the hypothesis that there is an effect between servers is proven. As a result of this study, it was confirmed that the prediction performance was superior when the multiple servers were assumed than when the single server was assumed. In particular, applying the Hierarchical Attention Network algorithm, assuming that the effects of each server will be different, played a role in improving the analysis effect. In addition, by applying a different threshold for each server, the prediction accuracy could be improved. This study showed that failures that are difficult to determine the cause can be predicted through historical data, and a model that can predict failures occurring in servers in data centers is presented. It is expected that the occurrence of disability can be prevented in advance using the results of this study.

Waterbody Detection for the Reservoirs in South Korea Using Swin Transformer and Sentinel-1 Images (Swin Transformer와 Sentinel-1 영상을 이용한 우리나라 저수지의 수체 탐지)

  • Soyeon Choi;Youjeong Youn;Jonggu Kang;Seoyeon Kim;Yemin Jeong;Yungyo Im;Youngmin Seo;Wanyub Kim;Minha Choi;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.949-965
    • /
    • 2023
  • In this study, we propose a method to monitor the surface area of agricultural reservoirs in South Korea using Sentinel-1 synthetic aperture radar images and the deep learning model, Swin Transformer. Utilizing the Google Earth Engine platform, datasets from 2017 to 2021 were constructed for seven agricultural reservoirs, categorized into 700 K-ton, 900 K-ton, and 1.5 M-ton capacities. For four of the reservoirs, a total of 1,283 images were used for model training through shuffling and 5-fold cross-validation techniques. Upon evaluation, the Swin Transformer Large model, configured with a window size of 12, demonstrated superior semantic segmentation performance, showing an average accuracy of 99.54% and a mean intersection over union (mIoU) of 95.15% for all folds. When the best-performing model was applied to the datasets of the remaining three reservoirsfor validation, it achieved an accuracy of over 99% and mIoU of over 94% for all reservoirs. These results indicate that the Swin Transformer model can effectively monitor the surface area of agricultural reservoirs in South Korea.

An Empirical Study on Defense Future Technology in Artificial Intelligence (인공지능 분야 국방 미래기술에 관한 실증연구)

  • Ahn, Jin-Woo;Noh, Sang-Woo;Kim, Tae-Hwan;Yun, Il-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.409-416
    • /
    • 2020
  • Artificial intelligence, which is in the spotlight as the core driving force of the 4th industrial revolution, is expanding its scope to various industrial fields such as smart factories and autonomous driving with the development of high-performance hardware, big data, data processing technology, learning methods and algorithms. In the field of defense, as the security environment has changed due to decreasing defense budget, reducing military service resources, and universalizing unmanned combat systems, advanced countries are also conducting technical and policy research to incorporate artificial intelligence into their work by including recognition systems, decision support, simplification of the work processes, and efficient resource utilization. For this reason, the importance of technology-driven planning and investigation is also increasing to discover and research potential defense future technologies. In this study, based on the research data that was collected to derive future defense technologies, we analyzed the characteristic evaluation indicators for future technologies in the field of artificial intelligence and conducted empirical studies. The study results confirmed that in the future technologies of the defense AI field, the applicability of the weapon system and the economic ripple effect will show a significant relationship with the prospect.

A Study on UI Prototyping Based on Personality of Things for Interusability in IoT Environment (IoT 환경에서 인터유저빌리티(Interusability) 개선을 위한 사물성격(Personality of Things)중심의 UI 프로토타이핑에 대한 연구)

  • Ahn, Mikyung;Park, Namchoon
    • Journal of the HCI Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.31-44
    • /
    • 2018
  • In the IoT environment, various things could be connected. Those connected things learn and operate themselves, by acquiring data. As human being, they have self-learning and self-operating systems. In the field of IoT study, therefore, the key issue is to design communication system connecting both of the two different types of subjects, human being(user) and the things. With the advent of the IoT environment, much research has been done in the field of UI design. It can be seen that research has been conducted to take complex factors into account through keywords such as multi-modality and interusability. However, the existing UI design method has limitations in structuring or testing interaction between things and users of IoT environment. Therefore, this paper suggests a new UI prototyping method. In this paper, the major analysis and studies are as follows: (1) defined what is the behavior process of the things (2) analyzed the existing IoT product (3) built a new framework driving personality types (4) extracted three representative personality models (5) applied the three models to the smart home service and tested UI prototyping. It is meaningful with that this study can confirm user experience (UX) about IoT service in a more comprehensive way. Moreover, the concept of the personality of things will be utilized as a tool for establishing the identity of artificial intelligence (AI) services in the future.

  • PDF

Web Search Behavior Analysis Based on the Self-bundling Query Method (웹검색 행태 연구 - 사용자가 스스로 쿼리를 뭉치는 방법으로 -)

  • Lee, Joong-Seek
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.45 no.2
    • /
    • pp.209-228
    • /
    • 2011
  • Web search behavior has evolved. People now search using many diverse information devices in various situations. To monitor these scattered and shifting search patterns, an improved way of learning and analysis are needed. Traditional web search studies relied on the server transaction logs and single query instance analysis. Since people use multiple smart devices and their searching occurs intermittently through a day, a bundled query research could look at the whole context as well as penetrating search needs. To observe and analyze bundled queries, we developed a proprietary research software set including a log catcher, query bundling tool, and bundle monitoring tool. In this system, users' daily search logs are sent to our analytic server, every night the users need to log on our bundling tool to package his/her queries, a built in web survey collects additional data, and our researcher performs deep interviews on a weekly basis. Out of 90 participants in the study, it was found that a normal user generates on average 4.75 query bundles a day, and each bundle contains 2.75 queries. Query bundles were categorized by; Query refinement vs. Topic refinement and 9 different sub-categories.