• Title/Summary/Keyword: Smart Learning Quality

Search Result 146, Processing Time 0.024 seconds

A Survey of The Status of R&D Using ICT and Artificial Intelligence in Agriculture (농업에서의 ICT와 인공지능을 활용한 연구 개발 현황 조사)

  • Seonho Khang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.104-112
    • /
    • 2023
  • Agriculture plays an industrial and economic role, as well as an environmental and ecological conservation role, group harmony and the inheritance of traditional culture. However, no matter how advanced the industry is, the basic food necessary for human life can only be produced through the photosynthesis of plants with natural resources such as the sun, water, and air. The Food and Agriculture Organization of the United Nations (FAO) predicts that the world's population will increase by another 2 billion people by 2050, and it faces a myriad of complex and diverse factors to consider, including climate change, food security concerns, and global ecosystems and political factors. In particular, in order to solve problems such as increasing productivity and production of agricultural products, improving quality, and saving energy, it is difficult to solve them with traditional farming methods. Recently, with the wind of the 4th industrial revolution, ICT convergence technology and artificial intelligence have been rapidly developing in many fields, but it is also true that the application of new technologies is somewhat delayed due to the unique characteristics of agriculture. However, in recent years, as ICT and artificial intelligence utilization technologies have been developed and applied by many researchers, a revolution is also taking place in agriculture. This paper summarizes the current state of research so far in four categories of agriculture, namely crop cultivation environment management, soil management, pest management, and irrigation management, and smart farm research data that has recently been actively developed around the world.

  • PDF

Study on 3D AR of Education Robot for NURI Process (누리과정에 적용할 교육로봇의 가상환경 3D AR 연구)

  • Park, Young-Suk;Park, Dea-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.209-212
    • /
    • 2013
  • The Nuri process of emphasis by the Ministry of Education to promote is standardized curriculum at the national level for the education and care. It is to improve the quality of pre-school education and Ensure a fair starting line early in life and It emphasizes character education in all areas of the window. Nuri the process of development of a the insect robot for the Creativity education Increased the interesting and educational effects. Assembly and the effect on learning of educational content using a VR educational robot using the existing floor assembly using the online website to help assemble and learning raised. Order to take advantage of information technology in the information-based society requires the active interest and motivation in learning, creative learning toddlers learning robot are also needed. A three-dimensional model of the robot, and augmented by linking through the marker, the target marker and the camera relative to the coordinate system of augmented reality, seeking to convert the marker to be used in augmented reality marker patterns within a pre-defined patternto be able to make a decision on what of. The fusion of a smart education through training and reinforcement the educational assembly of the robot in the real world window that is represented by a virtual environment in this paper to present a new form of state-of-the-art smart training, you will want to lay the foundation of the nation through the early national talent nurturing talent.

  • PDF

The Chronological Stages of Advanced Online Education (온라인 고등교육의 변화에 대한 단계별 고찰)

  • Kim, Hyunkyung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.105-112
    • /
    • 2020
  • This study categorized the developments of advanced online education in Korea, which have achieved rapid growth for past 20 years, and analyzed the characteristics of each stage. Starting from the introduction stage, which focused on video content and basic LMS, it went through a growth stage in which the transition from lifelong to advanced education institute, and the first online graduate program accreditation were achieved. In the maturity stage, the expansion of online graduate programs led to the spread of online real-time classes and seminars, and the introduction and proliferation of smart-phone also paved the way for smart learning. However, as the non-face-to-face teaching method was suddenly implemented as a whole due to the COVID-19 pandemic, online education has rapidly developed and also faced various problems to improve the quality of education. By analyzing and reviewing the trend, this study discussed the problems facing the current revolutionary period and what needs to be solved for future development.

Deep Learning Description Language for Referring to Analysis Model Based on Trusted Deep Learning (신뢰성있는 딥러닝 기반 분석 모델을 참조하기 위한 딥러닝 기술 언어)

  • Mun, Jong Hyeok;Kim, Do Hyung;Choi, Jong Sun;Choi, Jae Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.4
    • /
    • pp.133-142
    • /
    • 2021
  • With the recent advancements of deep learning, companies such as smart home, healthcare, and intelligent transportation systems are utilizing its functionality to provide high-quality services for vehicle detection, emergency situation detection, and controlling energy consumption. To provide reliable services in such sensitive systems, deep learning models are required to have high accuracy. In order to develop a deep learning model for analyzing previously mentioned services, developers should utilize the state of the art deep learning models that have already been verified for higher accuracy. The developers can verify the accuracy of the referenced model by validating the model on the dataset. For this validation, the developer needs structural information to document and apply deep learning models, including metadata such as learning dataset, network architecture, and development environments. In this paper, we propose a description language that represents the network architecture of the deep learning model along with its metadata that are necessary to develop a deep learning model. Through the proposed description language, developers can easily verify the accuracy of the referenced deep learning model. Our experiments demonstrate the application scenario of a deep learning description document that focuses on the license plate recognition for the detection of illegally parked vehicles.

A Study on the Prediction Model for Bioactive Components of Cnidium officinale Makino according to Climate Change using Machine Learning (머신러닝을 이용한 기후변화에 따른 천궁 생리 활성 성분 예측 모델 연구)

  • Hyunjo Lee;Hyun Jung Koo;Kyeong Cheol Lee;Won-Kyun Joo;Cheol-Joo Chae
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.93-101
    • /
    • 2023
  • Climate change has emerged as a global problem, with frequent temperature increases, droughts, and floods, and it is predicted that it will have a great impact on the characteristics and productivity of crops. Cnidium officinale is used not only as traditionally used herbal medicines, but also as various industrial raw materials such as health functional foods, natural medicines, and living materials, but productivity is decreasing due to threats such as continuous crop damage and climate change. Therefore, this paper proposes a model that can predict the physiologically active ingredient index according to the climate change scenario of Cnidium officinale, a representative medicinal crop vulnerable to climate change. In this paper, data was first augmented using the CTGAN algorithm to solve the problem of data imbalance in the collection of environment information, physiological reactions, and physiological active ingredient information. Column Shape and Column Pair Trends were used to measure augmented data quality, and overall quality of 88% was achieved on average. In addition, five models RF, SVR, XGBoost, AdaBoost, and LightBGM were used to predict phenol and flavonoid content by dividing them into ground and underground using augmented data. As a result of model evaluation, the XGBoost model showed the best performance in predicting the physiological active ingredients of the sacrum, and it was confirmed to be about twice as accurate as the SVR model.

AI-BASED Monitoring Of New Plant Growth Management System Design

  • Seung-Ho Lee;Seung-Jung Shin
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.104-108
    • /
    • 2023
  • This paper deals with research on innovative systems using Python-based artificial intelligence technology in the field of plant growth monitoring. The importance of monitoring and analyzing the health status and growth environment of plants in real time contributes to improving the efficiency and quality of crop production. This paper proposes a method of processing and analyzing plant image data using computer vision and deep learning technologies. The system was implemented using Python language and the main deep learning framework, TensorFlow, PyTorch. A camera system that monitors plants in real time acquires image data and provides it as input to a deep neural network model. This model was used to determine the growth state of plants, the presence of pests, and nutritional status. The proposed system provides users with information on plant state changes in real time by providing monitoring results in the form of visual or notification. In addition, it is also used to predict future growth conditions or anomalies by building data analysis and prediction models based on the collected data. This paper is about the design and implementation of Python-based plant growth monitoring systems, data processing and analysis methods, and is expected to contribute to important research areas for improving plant production efficiency and reducing resource consumption.

Accuracy Measurement of Image Processing-Based Artificial Intelligence Models

  • Jong-Hyun Lee;Sang-Hyun Lee
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.212-220
    • /
    • 2024
  • When a typhoon or natural disaster occurs, a significant number of orchard fruits fall. This has a great impact on the income of farmers. In this paper, we introduce an AI-based method to enhance low-quality raw images. Specifically, we focus on apple images, which are being used as AI training data. In this paper, we utilize both a basic program and an artificial intelligence model to conduct a general image process that determines the number of apples in an apple tree image. Our objective is to evaluate high and low performance based on the close proximity of the result to the actual number. The artificial intelligence models utilized in this study include the Convolutional Neural Network (CNN), VGG16, and RandomForest models, as well as a model utilizing traditional image processing techniques. The study found that 49 red apple fruits out of a total of 87 were identified in the apple tree image, resulting in a 62% hit rate after the general image process. The VGG16 model identified 61, corresponding to 88%, while the RandomForest model identified 32, corresponding to 83%. The CNN model identified 54, resulting in a 95% confirmation rate. Therefore, we aim to select an artificial intelligence model with outstanding performance and use a real-time object separation method employing artificial function and image processing techniques to identify orchard fruits. This application can notably enhance the income and convenience of orchard farmers.

Precision Agriculture using Internet of Thing with Artificial Intelligence: A Systematic Literature Review

  • Noureen Fatima;Kainat Fareed Memon;Zahid Hussain Khand;Sana Gul;Manisha Kumari;Ghulam Mujtaba Sheikh
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.155-164
    • /
    • 2023
  • Machine learning with its high precision algorithms, Precision agriculture (PA) is a new emerging concept nowadays. Many researchers have worked on the quality and quantity of PA by using sensors, networking, machine learning (ML) techniques, and big data. However, there has been no attempt to work on trends of artificial intelligence (AI) techniques, dataset and crop type on precision agriculture using internet of things (IoT). This research aims to systematically analyze the domains of AI techniques and datasets that have been used in IoT based prediction in the area of PA. A systematic literature review is performed on AI based techniques and datasets for crop management, weather, irrigation, plant, soil and pest prediction. We took the papers on precision agriculture published in the last six years (2013-2019). We considered 42 primary studies related to the research objectives. After critical analysis of the studies, we found that crop management; soil and temperature areas of PA have been commonly used with the help of IoT devices and AI techniques. Moreover, different artificial intelligence techniques like ANN, CNN, SVM, Decision Tree, RF, etc. have been utilized in different fields of Precision agriculture. Image processing with supervised and unsupervised learning practice for prediction and monitoring the PA are also used. In addition, most of the studies are forfaiting sensory dataset to measure different properties of soil, weather, irrigation and crop. To this end, at the end, we provide future directions for researchers and guidelines for practitioners based on the findings of this review.

Semantic Pre-training Methodology for Improving Text Summarization Quality (텍스트 요약 품질 향상을 위한 의미적 사전학습 방법론)

  • Mingyu Jeon;Namgyu Kim
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.17-27
    • /
    • 2023
  • Recently, automatic text summarization, which automatically summarizes only meaningful information for users, is being studied steadily. Especially, research on text summarization using Transformer, an artificial neural network model, has been mainly conducted. Among various studies, the GSG method, which trains a model through sentence-by-sentence masking, has received the most attention. However, the traditional GSG has limitations in selecting a sentence to be masked based on the degree of overlap of tokens, not the meaning of a sentence. Therefore, in this study, in order to improve the quality of text summarization, we propose SbGSG (Semantic-based GSG) methodology that selects sentences to be masked by GSG considering the meaning of sentences. As a result of conducting an experiment using 370,000 news articles and 21,600 summaries and reports, it was confirmed that the proposed methodology, SbGSG, showed superior performance compared to the traditional GSG in terms of ROUGE and BERT Score.

WebRTC-Based Remote Collaborative Learning Platform (WebRTC 기반 원격 협업 학습 플랫폼 기술 연구)

  • Oh, Hyeontaek;Ahn, Sanghong;Yang, Jinhong;Choi, Jun Kyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.914-923
    • /
    • 2015
  • Recently, as the number of smart devices (such as smart TV or Web based IPTV) increases, the way of digital broadcast contents is changed. This change leads that conventional broadcast media accepts Web platform and its services to provide more quality contents. Based on this change, in education field, education broadcasting also follows the trend. The traditional education broadcasting platforms, which just delivered the lecture in one-way, are utilized the Web technology to make interaction between teacher and student. Current education platforms, however, are insufficient to satisfy users' demands for two-way interactions. This paper proposes a new remote collaborative learning platform which able to provide high interactivity among users. Based on new functional requirements from original use case, the platform provides collaborative contents sharing and collaborative video streaming techniques by utilizing WebRTC (Web Real-Time Communication) technology. The implementation demonstrates the operability of proposed system.