• Title/Summary/Keyword: Smart Learning Environment

Search Result 386, Processing Time 0.027 seconds

Development of a Deep Learning Prediction Model to Recognize Dangerous Situations in a Gas-use Environment (가스 사용 환경에서의 위험 상황 인지를 위한 딥러닝 예측모델 개발)

  • Kang, Byung Jun;Cho, Hyun-Chan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.132-135
    • /
    • 2022
  • Recently, with the development of IoT communication technology, products and services that detect and inform the surrounding environment under the name of smart plugs are being developed. In particular, in order to prepare for fire or gas leakage accidents, products that automatically close and warn when abnormal symptoms occur are used. Most of them use methods of collecting, analyzing, and processing information through networks. However, there is a disadvantage that it cannot be used when the network is temporarily in a failed state. In this paper, sensor information was analyzed using deep learning, and a model that can predict abnormal symptoms was learned in advance and applied to MCU. The performance of each model was evaluated by developing firmware that can judge and process on its own regardless of network and applying a predictive model to the MCU after 3 to 120 seconds.

Car detection area segmentation using deep learning system

  • Dong-Jin Kwon;Sang-hoon Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.182-189
    • /
    • 2023
  • A recently research, object detection and segmentation have emerged as crucial technologies widely utilized in various fields such as autonomous driving systems, surveillance and image editing. This paper proposes a program that utilizes the QT framework to perform real-time object detection and precise instance segmentation by integrating YOLO(You Only Look Once) and Mask R CNN. This system provides users with a diverse image editing environment, offering features such as selecting specific modes, drawing masks, inspecting detailed image information and employing various image processing techniques, including those based on deep learning. The program advantage the efficiency of YOLO to enable fast and accurate object detection, providing information about bounding boxes. Additionally, it performs precise segmentation using the functionalities of Mask R CNN, allowing users to accurately distinguish and edit objects within images. The QT interface ensures an intuitive and user-friendly environment for program control and enhancing accessibility. Through experiments and evaluations, our proposed system has been demonstrated to be effective in various scenarios. This program provides convenience and powerful image processing and editing capabilities to both beginners and experts, smoothly integrating computer vision technology. This paper contributes to the growth of the computer vision application field and showing the potential to integrate various image processing algorithms on a user-friendly platform

Development of AI-based Smart Agriculture Early Warning System

  • Hyun Sim;Hyunwook Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.67-77
    • /
    • 2023
  • This study represents an innovative research conducted in the smart farm environment, developing a deep learning-based disease and pest detection model and applying it to the Intelligent Internet of Things (IoT) platform to explore new possibilities in the implementation of digital agricultural environments. The core of the research was the integration of the latest ImageNet models such as Pseudo-Labeling, RegNet, EfficientNet, and preprocessing methods to detect various diseases and pests in complex agricultural environments with high accuracy. To this end, ensemble learning techniques were applied to maximize the accuracy and stability of the model, and the model was evaluated using various performance indicators such as mean Average Precision (mAP), precision, recall, accuracy, and box loss. Additionally, the SHAP framework was utilized to gain a deeper understanding of the model's prediction criteria, making the decision-making process more transparent. This analysis provided significant insights into how the model considers various variables to detect diseases and pests.

Research-platform Design for the Korean Smart Greenhouse Based on Cloud Computing (클라우드 기반 한국형 스마트 온실 연구 플랫폼 설계 방안)

  • Baek, Jeong-Hyun;Heo, Jeong-Wook;Kim, Hyun-Hwan;Hong, Youngsin;Lee, Jae-Su
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.27-33
    • /
    • 2018
  • This study was performed to review the domestic and international smart farm service model based on the convergence of agriculture and information & communication technology and derived various factors needed to improve the Korean smart greenhouse. Studies on modelling of crop growth environment in domestic smart farms were limited. And it took a lot of time to build research infrastructure. The cloud-based research platform as an alternative is needed. This platform can provide an infrastructure for comprehensive data storage and analysis as it manages the growth model of cloud-based integrated data, growth environment model, actuators control model, and farm management as well as knowledge-based expert systems and farm dashboard. Therefore, the cloud-based research platform can be applied as to quantify the relationships among various factors, such as the growth environment of crops, productivity, and actuators control. In addition, it will enable researchers to analyze quantitatively the growth environment model of crops, plants, and growth by utilizing big data, machine learning, and artificial intelligences.

A Study on Design Method of Smart Device for Industrial Disaster Detection and Index Derivation for Performance Evaluation (산업재해 감지 스마트 디바이스 설계 방안 및 성능평가를 위한 지표 도출에 관한 연구)

  • Ran Hee Lee;Ki Tae Bae;Joon Hoi Choi
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.120-128
    • /
    • 2023
  • There are various ICT technologies continuously being developed to reduce damage by industrial accidents. And research is being conducted to minimize damage in case of industrial accidents by utilizing sensors, IoT, big data, machine learning and artificial intelligence. In this paper, we propose a design method for a smart device capable of multilateral communication between devices and smart repeater in the communication shaded Areas such as closed areas of industrial sites, mountains, oceans, and coal mines. The proposed device collects worker's information such as worker location and movement speed, and environmental information such as terrain, wind direction, temperature, and humidity, and secures a safe distance between workers to warn in case of a dangerous situation and is designed to be attached to a helmet. For this, we proposed functional requirements for smart devices and design methods for implementing each requirement using sensors and modules in smart device. And we derived evaluation items for performance evaluation of the smart device and proposed an evaluation environment for performance evaluation in mountainous area.

A Study on Augmented Reality-based Positioning Service Using Machine Learning (머신 러닝을 이용한 증강현실 기반 측위 서비스에 관한 연구)

  • Yoon, Chang-Pyo;Lee, Hae-Jun;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.313-315
    • /
    • 2017
  • Recently, application fields using machine learning have been widely expanded. In addition to the spread of smart devices, application services using location-based services are also in demand. However, it is difficult to provide the application service through the positioning in the indoor environment such as the specific space where the disaster situation where the information for positioning can not be collected and the actual location location information can not be used. In this situation, using the spatial information composed of the marker information and the markers of the neighbor registered in the augmented reality environment, positioning at a specific situation or position becomes possible. At this time, it is possible to learn the operation that makes the configuration of the marker-based spatial information correspond to the actual position through the machine learning, and the optimal positioning result can be obtained by minimizing the error. In this paper, we study the positioning methods required in specific situations using machine learning for learning of augmented reality markers and spatial information.

  • PDF

Image Annotation System for Mobile Augmented Reality Environment (모바일 환경의 증강현실 영상 주석 시스템)

  • Lee, Jae-Young;Kwon, Jun-Sik
    • Journal of Digital Contents Society
    • /
    • v.16 no.3
    • /
    • pp.437-444
    • /
    • 2015
  • In this paper, we propose an information service system using augmented reality technology on mobile devices. With the advancement in ICT technology the computer is smaller and easy to carry and developed into the tablet PC and the smartphone typically. The user can confirm and learn the desired data using the augmented reality technology, regardless of the environment. Padding the supplementary images or videos to the real image using the camera, we can have help from such additionally obtained images. In this paper, using an augmented reality technology on a tablet PC or smartphone environment, we implement a system for providing information to the user. This system can be utilized in all areas such as learning, entertainment, public relations and advertisement, etc.

The Impact of Social Network Position on Learning Performance: Focused on University Students Studying Tourism Data Analytics (소셜네트워크위치가 학업성과에 미치는 영향: 관광데이터분석 수강생을 중심으로)

  • Kim, Chang-Sik;Jung, Tae-Woong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.2
    • /
    • pp.105-115
    • /
    • 2020
  • This study examines the influence of the betweenness centrality on tertius gaudens orientation, relationship commitment, and individual learning performance within the university environment. The betweenness centrality explored the antecedent factor of tertius gaudens orientation. The relationship commitment explored the consequence factor of tertius gaudens orientation, and the learning performance explored the consequence factor of the relationship commitment. This survey was carried out by university students. Data were obtained from 74 respondents who have been studying tourism data analytics at one of the leading universities, in Seoul, Korea. In order to validate the research model, social network analysis tool, UCINET 6.689, and a structural equation modeling tool, SmartPLS 3.3.2, were used. The empirical result showed that all antecedent factors (betweenness centrality position, tertius gaudens orientation, and relationship commitment) of the learning performance were significant. In conclusion, this study discusses the research findings and implications. Then the limitations and future directions of the study were suggested.

A Case Study of Educational Content using Arduino based on Augmented Reality

  • Soyoung Kim;Heesun Kim
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.268-276
    • /
    • 2023
  • The representative branch of ICT education is Arduino. However, there are various problems when teaching using Arduino. Arduino requires a complex understanding of hardware and software, and this can be perceived as a difficult course, especially for beginners who are not familiar with programming or electronics. Additionally, the process of connecting the pins of the Arduino board and components must be accurate, and even small mistakes can lead to project failure, which can reduce the learner's concentration and interest in learning Arduino. Existing Arduino learning content consists of text and images in 2D format, which has limitations in increasing student understanding and immersion. Therefore, in this paper analyzes the necessary conditions for sprouting 'growing kidney beans' in the first semester of the fourth grade of elementary school, and builds an automated experimental environment using Arduino. Augmented reality of the pin connection process was designed and produced to solve the difficulties when building an automation system using Arduino. After 3D modeling Arduino and components using 3D Max, animation was set, and augmented reality (AR) content was produced using Unity to provide learners with more intuitive and immersive learning content when learning Arduino. Augmented reality (AR)-based Arduino learning content production is expected to increase educational effects by improving the understanding and immersion of classes in ICT education using Arduino and inducing fun and interest in physical computing coding education.

Social Media based Real-time Event Detection by using Deep Learning Methods

  • Nguyen, Van Quan;Yang, Hyung-Jeong;Kim, Young-chul;Kim, Soo-hyung;Kim, Kyungbaek
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.41-48
    • /
    • 2017
  • Event detection using social media has been widespread since social network services have been an active communication channel for connecting with others, diffusing news message. Especially, the real-time characteristic of social media has created the opportunity for supporting for real-time applications/systems. Social network such as Twitter is the potential data source to explore useful information by mining messages posted by the user community. This paper proposed a novel system for temporal event detection by analyzing social data. As a result, this information can be used by first responders, decision makers, or news agents to gain insight of the situation. The proposed approach takes advantages of deep learning methods that play core techniques on the main tasks including informative data identifying from a noisy environment and temporal event detection. The former is the responsibility of Convolutional Neural Network model trained from labeled Twitter data. The latter is for event detection supported by Recurrent Neural Network module. We demonstrated our approach and experimental results on the case study of earthquake situations. Our system is more adaptive than other systems used traditional methods since deep learning enables to extract the features of data without spending lots of time constructing feature by hand. This benefit makes our approach adaptive to extend to a new context of practice. Moreover, the proposed system promised to respond to acceptable delay within several minutes that will helpful mean for supporting news channel agents or belief plan in case of disaster events.