This paper presents a smart seat for correction of driver posture while driving. We introduce good postures with seat height, seat angle, head height, back of knees, distances of foot pedals, tilt of seat, etc. There have been some studies on correction of good posture while driving, effects of driving environment on driver's posture, sitting strategies based on seating pressure distribution, estimation of driver's standard postures, and others. However, there are a few studies on guide of good postures while driving for problem of driver's posture using machine leaning. Therefore, we suggest a smart seat for correction of driver's posture based on machine leaning, 1) developed the system to get postures by 10 piezoelectric effect element, 2) collect piezoelectric values from 37 drivers and 28 types of cars, 3) suggest 4 types of good postures while driving, 4) analyze test postures by kNN. As the results, we can guide good postures for bad or problems of postures while driving.
While global manufacturing is becoming more competitive due to variety of customer demand, increase in production cost and uncertainty in resource availability, the future ability of manufacturing industries depends upon the implementation of Smart Factory. With the convergence of new information and communication technology, Smart Factory enables manufacturers to respond quickly to customer demand and minimize resource usage while maximizing productivity performance. This paper presents the development of a big data analytics platform architecture for Smart Factory. As this platform represents a conceptual software structure needed to implement data-driven decision-making mechanism in shop floors, it enables the creation and use of diagnosis, prediction and optimization models through the use of data analytics and big data. The completion of implementing the platform will help manufacturers: 1) acquire an advanced technology towards manufacturing intelligence, 2) implement a cost-effective analytics environment through the use of standardized data interfaces and open-source solutions, 3) obtain a technical reference for time-efficiently implementing an analytics modeling environment, and 4) eventually improve productivity performance in manufacturing systems. This paper also presents a technical architecture for big data infrastructure, which we are implementing, and a case study to demonstrate energy-predictive analytics in a machine tool system.
With the wide spread of smart farms and the advancements in IoT technology, it is easy to obtain additional data in addition to crop images. Consequently, deep learning-based crop disease diagnosis research utilizing multimodal data has become important. This study proposes a crop disease diagnosis method using multimodal supervised contrastive learning by expanding upon the multimodal self-supervised learning. RandAugment method was used to augment crop image and time series of environment data. These augmented data passed through encoder and projection head for each modality, yielding low-dimensional features. Subsequently, the proposed multimodal supervised contrastive loss helped features from the same class get closer while pushing apart those from different classes. Following this, the pretrained model was fine-tuned for crop disease diagnosis. The visualization of t-SNE result and comparative assessments of crop disease diagnosis performance substantiate that the proposed method has superior performance than multimodal self-supervised learning.
International journal of advanced smart convergence
/
제13권2호
/
pp.258-266
/
2024
E-learning systems have proliferated in recent years, particularly in the wake of the global COVID-19 pandemic. For kids, there isn't a specific online learning platform available, though. To do this, new conceptual models of training and learning software that are adapted to the abilities and preferences of end users must be created. Young pupils: those in kindergarten, preschool, and elementary school are unique subjects with little research history. From the standpoint of software technology, young students who have never had access to a computer system are regarded as specific users with high expectations for the functionality and interface of the software, social network connectivity, and instantaneous Internet communication. In this study, we suggested creating an electronic learning management system that is web-based and appropriate for primary school pupils. User-centered design is the fundamental technique that was applied in the development of the system that we are proposing. Test findings have demonstrated that students who are using the digital environment for the first time are studying more effectively thanks to the online learning management system.
기존의 전력 시스템에서 불필요하게 생성되거나 낭비되는 예비전력을 감소시키고 에너지 사용 효율을 개선하기 위한 연구가 최근 활발히 진행되고 있다. 본 연구에서는 전기기기들의 전원 제어를 통한 에너지 사용 효율을 개선하기 위해 스마트그리드의 요소 기술 중 하나인 스마트미터기를 개발하며, 실시간으로 측정된 전력 사용량을 딥 러닝을 통해 전력 사용량의 트렌드를 분석 및 예측한다. 이후 예측된 전력 사용량과 실시간 전력 사용량을 비교하여 전기기기들의 전원을 제어하는 알고리즘을 제안 및 개발한다. 제안한 딥 러닝 기반의 스마트미터기의 성능을 확인하기 위해서 실제 전력 소비 환경을 구축하였고, 실시간으로 전력 사용 데이터를 확보하여 딥 러닝 모델에 학습시킨 뒤 전력 사용량을 예측하였다. 예측된 값과 실제 사용량을 실시간으로 비교하여 예측을 벗어난 기기들의 전원을 제어하여, 전력 사용량을 감소시키고 에너지 사용 효율이 개선되는 결과를 확인하였다.
스마트폰이나 테블릿 컴퓨터 등 스마트 모바일 단말기는 다양한 프로그램의 사용이 가능하고 데이터 통신 및 개인화 서비스를 통한 소셜네트워킹 서비스가 가능하다 이러한 특성으로 인해 특이 우리나라 사이버대학교에서는 이미 많은 인프라를 구축했으며 이러한 모바일 장비에 적합한 강의를 제공하고 있다. 그러나 여러 모바일 장비 중에서 스마트폰 사용 비중이 월등이 높지만 작은 디스플레이 환경은 학습자의 강의 수강(시청)에 다소 불편함이 발생해서 학습능률을 저하시키는 요소가 될 수 있다. 이런 학습저하 요소를 극복하기 위해서는 작은 디스플레이에서 효과적으로 학습할 수 있는 콘텐츠 레이아웃이 필요하다. 본 논문에서는 학습효과 향상용 스마트폰 교육 미디어 제작을 위해 황금분할, 황금나선 이론을 기반으로 한 외적체제를 연구하여 스마트폰 콘텐츠 개발에 활용할 레이아웃을 벡터방식인 일러스트 프로그램으로 개발해 플렛폼을 제시하였다.
Kim, Jaeseung;Choi, Seyun;Lee, Seunghyun;Kwon, Soonchul
International journal of advanced smart convergence
/
제10권4호
/
pp.110-116
/
2021
This paper proposed a real-time earlobe detection system using deep learning on the web. Existing deep learning-based detection methods often find independent objects such as cars, mugs, cats, and people. We proposed a way to receive an image through the camera of the user device in a web environment and detect the earlobe on the server. First, we took a picture of the user's face with the user's device camera on the web so that the user's ears were visible. After that, we sent the photographed user's face to the server to find the earlobe. Based on the detected results, we printed an earring model on the user's earlobe on the web. We trained an existing YOLO v5 model using a dataset of about 200 that created a bounding box on the earlobe. We estimated the position of the earlobe through a trained deep learning model. Through this process, we proposed a real-time earlobe detection system on the web. The proposed method showed the performance of detecting earlobes in real-time and loading 3D models from the web in real-time.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권9호
/
pp.3138-3150
/
2021
Multimedia services on the Internet are continuously increasing. Accordingly, the demand for a technology for efficiently delivering multimedia traffic is also constantly increasing. The multicast technique, that delivers the same content to several destinations, is constantly being developed. This technique delivers a content from a source to all destinations through the multicast tree. The multicast tree with low cost increases the utilization of network resources. However, the finding of the optimal multicast tree that has the minimum link costs is very difficult and its calculation complexity is the same as the complexity of the Steiner tree calculation which is NP-complete. Therefore, we need an effective way to obtain a multicast tree with low cost and less calculation time on SDN-based smart network platforms. In this paper, we propose a new multicast tree generation algorithm which produces a multicast tree using an agent trained by model-based meta reinforcement learning. Experiments verified that the proposed algorithm generated multicast trees in less time compared with existing approximation algorithms. It produced multicast trees with low cost in a dynamic network environment compared with the previous DQN-based algorithm.
오늘날 점점 증가하는 위협 환경에서는 보안 이벤트에 대한 신속하고 효과적인 탐지 및 대응이 필수적이다. 이러한 문제를 해결하기 위해 많은 기업과 조직에서는 다양한 보안관제시스템을 도입하여 보안 위협에 대응하고 있다. 그러나 기존 보안관제시스템은 보안 이벤트의 복잡성과 다양한 특성으로 인해 어려움을 겪고 있다. 본 연구에서는 인공지능 기반의 자동화된 통합보안관제시스템 모델을 제안하였다. 인공지능 기술인 딥러닝을 기반으로 하여 다양한 보안 이벤트에 대해 효과적인 탐지와 이를 처리하는 기능들을 제공한다. 이를 위해 모델은 기존의 보안관제시스템 한계를 극복하기 위하여 다양한 인공지능 알고리즘과 머신러닝 방법을 적용한다. 제안된 모델은 운영자의 업무량을 줄이고 효율적인 운영을 보장하며 보안 위협에 대한 신속한 대응을 지원하게 될 것이다.
본 논문은 스마트 기기의 터치 인터페이스를 활용하여 학습자가 직접 입체 학습 콘텐츠를 제어함으로써 보다 실감적인 교육 환경을 구축하고자 한다. 또한 기존의 입체 학습 콘텐츠는 제작의 어려움으로 인해 콘텐츠 확보와 제공에 한계가 있어 교사 및 학습자가 직접 콘텐츠를 제작하고 공유할 수 있도록 프레임워크를 설계하였다. 프레임워크는 직관적인 XML 언어로 구성되고 안드로이드가 탑재된 기기에서 재생 및 저작이 가능하도록 어플리케이션을 구현하였으며 콘텐츠 공유를 위한 서버 환경도 구축하였다. 제안한 프레임워크는 전문가 평가를 통해 타당성을 검증한 결과 새로운 학습 콘텐츠 활용 가능성 면에서 긍정적으로 분석되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.