• Title/Summary/Keyword: Smart Learning Environment

Search Result 385, Processing Time 0.024 seconds

Factors Affecting Student Performance in E-Learning: A Case Study of Higher Educational Institutions in Indonesia

  • MARLINA, Evi;TJAHJADI, Bambang;NINGSIH, Sri
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.4
    • /
    • pp.993-1001
    • /
    • 2021
  • This study aims to determine the factors influencing student performance using the teaching and learning process through e-learning based on the unified theory of acceptance and use technology (UTAUT). This study also sets out to propose additional variables to expand the UTAUT model to be more suitable to use in higher education. This research conducted a literature review, expert interviews, and a self-administered survey involving 200 students at tertiary institutions in Riau province, Indonesia. The questionnaire data were analyzed using SmartPLS 2. This study shows that UTAUT constructs, namely, social influence, facility conditions, and effort expectancy have a significant influence on student behavior and performance, while the performance expectancy variable shows no significant effect. The additional variables, including lecturer characteristics, external motivation, and organizational structure, directly affect student performance. However, concerning student behavior, motivation and environment are the only variables with a significant effect. The results of this study suggest the behavior deteminant such as lecturer characteristics, motivation and environment, and organizational structure improve student performance. This study investigates factors affecting the performance of university students through the learning employing e-learning by developing the UTAUT constructs to include the lecturer characteristics, motivation and environment, and organizational structure in improving student performance.

Development of Eco-STEAM Educational Programs Based on Smart Learning (스마트러닝 기반의 생태 STEAM 교육 프로그램 개발)

  • Lee, Sung-Hee
    • Journal of Korean Elementary Science Education
    • /
    • v.32 no.3
    • /
    • pp.250-259
    • /
    • 2013
  • This study was aimed at developing eco-STEAM educational programs based on smart learning, implementing the programs to verify their educational effectiveness, and exploring the possibilities for eco-education. The subjects of Science, Mathematics, Practical Arts, Arts, and Physical Education were analyzed to extract STEAM elements for the 5th and 6th grades at elementary school, and then 16 lessen plans were developed under 8 thematic strands. The programs were applied to classes of 5th and 6th graders, and then tested to see the effectiveness in terms of emotional experience, convergence, creative design and satisfaction. The average scores for post-test were statistically higher than those of pre-test(p<.001), showing positive effectiveness of the eco-STEAM programs developed. This study put out the following conclusions. First, the students got emotional experiences through inquiry and observation. Second, the programs helped students to learn about the environment in their contexts and provided a base for interdisciplinary approach. Third, the students in this study could have opportunities for improving their problem-solving abilities by using the creative design. Forth, the students' interests in the ecological topics were increased throughout regular curricula.

A study of duck detection using deep neural network based on RetinaNet model in smart farming

  • Jeyoung Lee;Hochul Kang
    • Journal of Animal Science and Technology
    • /
    • v.66 no.4
    • /
    • pp.846-858
    • /
    • 2024
  • In a duck cage, ducks are placed in various states. In particular, if a duck is overturned and falls or dies, it will adversely affect the growing environment. In order to prevent the foregoing, it was necessary to continuously manage the cage for duck growth. This study proposes a method using an object detection algorithm to improve the foregoing. Object detection refers to the work to perform classification and localization of all objects present in the image when an input image is given. To use an object detection algorithm in a duck cage, data to be used for learning should be made and the data should be augmented to secure enough data to learn from. In addition, the time required for object detection and the accuracy of object detection are important. The study collected, processed, and augmented image data for a total of two years in 2021 and 2022 from the duck cage. Based on the objects that must be detected, the data collected as such were divided at a ratio of 9 : 1, and learning and verification were performed. The final results were visually confirmed using images different from the images used for learning. The proposed method is expected to be used for minimizing human resources in the growing process in duck cages and making the duck cages into smart farms.

Traffic-based reinforcement learning with neural network algorithm in fog computing environment

  • Jung, Tae-Won;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.144-150
    • /
    • 2020
  • Reinforcement learning is a technology that can present successful and creative solutions in many areas. This reinforcement learning technology was used to deploy containers from cloud servers to fog servers to help them learn the maximization of rewards due to reduced traffic. Leveraging reinforcement learning is aimed at predicting traffic in the network and optimizing traffic-based fog computing network environment for cloud, fog and clients. The reinforcement learning system collects network traffic data from the fog server and IoT. Reinforcement learning neural networks, which use collected traffic data as input values, can consist of Long Short-Term Memory (LSTM) neural networks in network environments that support fog computing, to learn time series data and to predict optimized traffic. Description of the input and output values of the traffic-based reinforcement learning LSTM neural network, the composition of the node, the activation function and error function of the hidden layer, the overfitting method, and the optimization algorithm.

Information-Based Urban Regeneration for Smart Education Community (스마트 교육 커뮤니티 정보기반 도시재생)

  • Kimm, Woo-Young;Seo, Boong-Kyo
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.12
    • /
    • pp.13-20
    • /
    • 2018
  • This research is to analyze the public cases of information facilities in terms of central circulations in multi level volumes such as atrium or court which provide visual intervention between different spaces and physical connections such as bridges. Hunt Library design balances the understood pre-existing needs with the University's emerging needs to create a forward-thinking learning environment. While clearly a contemporary structure within a traditional context of the NCSU campus, the Hunt Library provides a positive platform for influencing its surroundings. Both technical and programmatic innovations are celebrated as part of the learning experience and provide a versatile and stimulating environment for students. Public library as open spaces connecting to an interactive social domain over communities can provide variety of learning environments, or technology based labs. There are many cases of the public information spaces with dynamic networks where participants can play their roles in physical space as well as in the intellectual stimulation. In the research, new public projects provide typologies of information spaces with user oriented media. The research is to address a creative transition between the reading space and the experimental links of the integration of state-of-the-art technology is highly visible in the building's design. The user-friendly browsing system that replaces the traditional browsing with the virtual shelves classified and archived by their form, is to reduce the storage space of the public library and it is to allow more space for collaborative learning. In addition to the intelligent robot of information storages, innovative features is the large-scale visualization space that supports team experiments to carry out collaborative online works and therefore the public library's various programs is to provide visitors with more efficient participatory environment.

Prediction of Multi-Physical Analysis Using Machine Learning (기계학습을 이용한 다중물리해석 결과 예측)

  • Lee, Keun-Myoung;Kim, Kee-Young;Oh, Ung;Yoo, Sung-kyu;Song, Byeong-Suk
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.94-102
    • /
    • 2016
  • This paper proposes a new prediction method to reduce times and labor of repetitive multi-physics simulation. To achieve exact results from the whole simulation processes, complex modeling and huge amounts of time are required. Current multi-physics analysis focuses on the simulation method itself and the simulation environment to reduce times and labor. However this paper proposes an alternative way to reduce simulation times and labor by exploiting machine learning algorithm trained with data set from simulation results. Through comparing each machine learning algorithm, Gaussian Process Regression showed the best performance with under 100 training data and how similar results can be achieved through machine-learning without a complex simulation process. Given trained machine learning algorithm, it's possible to predict the result after changing some features of the simulation model just in a few second. This new method will be helpful to effectively reduce simulation times and labor because it can predict the results before more simulation.

The Role of Smart Technologies in Training Future Specialists

  • Oksana, Popovych;Rostislav, Motsyk;Iryna, Mozul;Karina, Fedchenko;Andrii, Zhbanchyk;Olena, Terenko;Oleksandr, Kuchai
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.153-159
    • /
    • 2022
  • The article discusses the use of smart technologies in the training of future specialists. Today, learning using smart technologies is becoming a new educational standard, where information is presented in a logical sequence, computer training systems have powerful functions for the educational process. The functions of smart technologies are highlighted. It is noted that smart technologies are successfully used in the field of education and professional training. The concept of "smart education" is characterized. Smart education is an educational paradigm that underlies a new type of education system. The implementation of the smart education paradigm is aimed at the process of obtaining competencies and competencies for flexible and adapted interaction with the social, economic and technological environment. Smart education should ensure that the benefits of the global information society can be used to meet educational needs and interests. A special place is occupied by computer-based educational multimedia systems that allow you to deepen your knowledge, reduce the duration of training, and increase the number of students per teacher. The main principles of smart education are highlighted. Improving the efficiency of training in a modern higher education institution is impossible without the introduction of smart technologies in the organization of the educational process.

Method of Personal Portfolio Management in Smart Education Environment. (스마트 교육 환경에서 개인 포트폴리오 관리 방안)

  • Kim, Seong-Jin;Park, Seok-Cheon;Lee, Sang-Muk
    • Annual Conference of KIPS
    • /
    • 2013.05a
    • /
    • pp.1116-1119
    • /
    • 2013
  • 공교육을 시작으로 스마트교육이 본격적으로 이루어지면서 학습자의 데이터가 만들어 지고 있다. 이에 본 논문에서는 현재 학습자들의 데이터와 교내외활동의 산출물을 통합 서버에서 관리하고 이를 활용하여 포트폴리오를 작성하고 바르게 관리하여 보다 효과적인 교육과 평가가 이루어질 수 있는 방안을 제안하였다.

RTE System based on CBT for Effective Office SW Education (효과적인 오피스 SW 교육을 위한 CBT 기반의 RTE(Real Training Environment)시스템)

  • Kim, Seongyeol;Hong, Byeongdu
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.3
    • /
    • pp.375-387
    • /
    • 2013
  • Advanced internet service and smart equipment have caused an environment supporting various online learning anytime and anywhere, which requires learning contents optimized on a new media. Among various on/off line education related to IT, most part if it is office SW. Many oh them cannot make a good education for effective training in practical because many instructors are tend to focus on teaching simple function and use examples of formality repeatedly. In this paper we propose a new office SW education system that make use of LET(Live EduTainer) based on RTE(Real Training Environment) which maximize the effect of learning and it is integrated with GBL(Game Based Learning) which gives rise to interesting in a knowledge as well as simple teaching so that learners are absorbed on it. We'll elaborate a method for teaching and learning required in this system, design and configuration of the system.

Context-aware application for smart home based on Bayesian network (베이지안 네트워크에 기반한 스마트 홈에서의 상황인식 기법개발)

  • Chung, Woo-Yong;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.179-184
    • /
    • 2007
  • This paper deals with a context-aware application based on Bayesian network in the smart home. Bayesian network is a powerful graphical tool for learning casual dependencies between various context events and obtaining probability distributions. So we can recognize the resident's activities and home environment based on it. However as the sensors become various, learning the structure become difficult. We construct Bayesian network simple and efficient way with mutual information and evaluated the method in the virtual smart home.