• Title/Summary/Keyword: Smart Key

Search Result 1,234, Processing Time 0.026 seconds

Optimised neural network prediction of interface bond strength for GFRP tendon reinforced cemented soil

  • Zhang, Genbao;Chen, Changfu;Zhang, Yuhao;Zhao, Hongchao;Wang, Yufei;Wang, Xiangyu
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.599-611
    • /
    • 2022
  • Tendon reinforced cemented soil is applied extensively in foundation stabilisation and improvement, especially in areas with soft clay. To solve the deterioration problem led by steel corrosion, the glass fiber-reinforced polymer (GFRP) tendon is introduced to substitute the traditional steel tendon. The interface bond strength between the cemented soil matrix and GFRP tendon demonstrates the outstanding mechanical property of this composite. However, the lack of research between the influence factors and bond strength hinders the application. To evaluate these factors, back propagation neural network (BPNN) is applied to predict the relationship between them and bond strength. Since adjusting BPNN parameters is time-consuming and laborious, the particle swarm optimisation (PSO) algorithm is proposed. This study evaluated the influence of water content, cement content, curing time, and slip distance on the bond performance of GFRP tendon-reinforced cemented soils (GTRCS). The results showed that the ultimate and residual bond strengths were both in positive proportion to cement content and negative to water content. The sample cured for 28 days with 30% water content and 50% cement content had the largest ultimate strength (3879.40 kPa). The PSO-BPNN model was tuned with 3 neurons in the input layer, 10 in the hidden layer, and 1 in the output layer. It showed outstanding performance on a large database comprising 405 testing results. Its higher correlation coefficient (0.908) and lower root-mean-square error (239.11 kPa) were obtained compared to multiple linear regression (MLR) and logistic regression (LR). In addition, a sensitivity analysis was applied to acquire the ranking of the input variables. The results illustrated that the cement content performed the strongest influence on bond strength, followed by the water content and slip displacement.

Design of AC/DC Combined V2X System for Small Electric Vehicle (소형 전기차 적용을 위한 AC/DC 복합 V2X 시스템 설계)

  • Kim, Yeong-Jung;Chang, Young-Hag;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.617-624
    • /
    • 2022
  • The small electric vehicles equipped with V2X(vehicle to everything) systems may provide more information and function to the existing navigation system of the vehicle. The key components of V2X technology include V2V (vehicle to vehicle), V2N(vehicle to network) and V2I (vehicle to infrastructure). This study is to design and implementation of VI type E-PTO which is interfaced with external equipments, the work designs the components of E-PTO such as DC/DC converter, DC/AC converter, battery bidirectional charging system etc. Also, it implements the devices and control systems for driving. The test results of VI type E-PTO components showed allowable 10% requirements of transient voltage variation rate and recovery time within 100ms for start/stop and normal operation.

Matrix Character Relocation Technique for Improving Data Privacy in Shard-Based Private Blockchain Environments (샤드 기반 프라이빗 블록체인 환경에서 데이터 프라이버시 개선을 위한 매트릭스 문자 재배치 기법)

  • Lee, Yeol Kook;Seo, Jung Won;Park, Soo Young
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.2
    • /
    • pp.51-58
    • /
    • 2022
  • Blockchain technology is a system in which data from users participating in blockchain networks is distributed and stored. Bitcoin and Ethereum are attracting global attention, and the utilization of blockchain is expected to be endless. However, the need for blockchain data privacy protection is emerging in various financial, medical, and real estate sectors that process personal information due to the transparency of disclosing all data in the blockchain to network participants. Although studies using smart contracts, homomorphic encryption, and cryptographic key methods have been mainly conducted to protect existing blockchain data privacy, this paper proposes data privacy using matrix character relocation techniques differentiated from existing papers. The approach proposed in this paper consists largely of two methods: how to relocate the original data to matrix characters, how to return the deployed data to the original. Through qualitative experiments, we evaluate the safety of the approach proposed in this paper, and demonstrate that matrix character relocation will be sufficiently applicable in private blockchain environments by measuring the time it takes to revert applied data to original data.

Analytical and experimental exploration of sobol sequence based DoE for response estimation through hybrid simulation and polynomial chaos expansion

  • Rui Zhang;Chengyu Yang;Hetao Hou;Karlel Cornejo;Cheng Chen
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.113-130
    • /
    • 2023
  • Hybrid simulation (HS) has attracted community attention in recent years as an efficient and effective experimental technique for structural performance evaluation in size-limited laboratories. Traditional hybrid simulations usually take deterministic properties for their numerical substructures therefore could not account for inherent uncertainties within the engineering structures to provide probabilistic performance assessment. Reliable structural performance evaluation, therefore, calls for stochastic hybrid simulation (SHS) to explicitly account for substructure uncertainties. The experimental design of SHS is explored in this study to account for uncertainties within analytical substructures. Both computational simulation and laboratory experiments are conducted to evaluate the pseudo-random Sobol sequence for the experimental design of SHS. Meta-modeling through polynomial chaos expansion (PCE) is established from a computational simulation of a nonlinear single-degree-of-freedom (SDOF) structure to evaluate the influence of nonlinear behavior and ground motions uncertainties. A series of hybrid simulations are further conducted in the laboratory to validate the findings from computational analysis. It is shown that the Sobol sequence provides a good starting point for the experimental design of stochastic hybrid simulation. However, nonlinear structural behavior involving stiffness and strength degradation could significantly increase the number of hybrid simulations to acquire accurate statistical estimation for the structural response of interests. Compared with the statistical moments calculated directly from hybrid simulations in the laboratory, the meta-model through PCE gives more accurate estimation, therefore, providing a more effective way for uncertainty quantification.

A Model of Artificial Intelligence in Cyber Security of SCADA to Enhance Public Safety in UAE

  • Omar Abdulrahmanal Alattas Alhashmi;Mohd Faizal Abdullah;Raihana Syahirah Abdullah
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.173-182
    • /
    • 2023
  • The UAE government has set its sights on creating a smart, electronic-based government system that utilizes AI. The country's collaboration with India aims to bring substantial returns through AI innovation, with a target of over $20 billion in the coming years. To achieve this goal, the UAE launched its AI strategy in 2017, focused on improving performance in key sectors and becoming a leader in AI investment. To ensure public safety as the role of AI in government grows, the country is working on developing integrated cyber security solutions for SCADA systems. A questionnaire-based study was conducted, using the AI IQ Threat Scale to measure the variables in the research model. The sample consisted of 200 individuals from the UAE government, private sector, and academia, and data was collected through online surveys and analyzed using descriptive statistics and structural equation modeling. The results indicate that the AI IQ Threat Scale was effective in measuring the four main attacks and defense applications of AI. Additionally, the study reveals that AI governance and cyber defense have a positive impact on the resilience of AI systems. This study makes a valuable contribution to the UAE government's efforts to remain at the forefront of AI and technology exploitation. The results emphasize the need for appropriate evaluation models to ensure a resilient economy and improved public safety in the face of automation. The findings can inform future AI governance and cyber defense strategies for the UAE and other countries.

Formulation and evaluation a finite element model for free vibration and buckling behaviours of functionally graded porous (FGP) beams

  • Abdelhak Mesbah;Zakaria Belabed;Khaled Amara;Abdelouahed Tounsi;Abdelmoumen A. Bousahla;Fouad Bourada
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.291-309
    • /
    • 2023
  • This paper addresses the finite element modeling of functionally graded porous (FGP) beams for free vibration and buckling behaviour cases. The formulated finite element is based on simple and efficient higher order shear deformation theory. The key feature of this formulation is that it deals with Euler-Bernoulli beam theory with only three unknowns without requiring any shear correction factor. In fact, the presented two-noded beam element has three degrees of freedom per node, and the discrete model guarantees the interelement continuity by using both C0 and C1 continuities for the displacement field and its first derivative shape functions, respectively. The weak form of the governing equations is obtained from the Hamilton principle of FGP beams to generate the elementary stiffness, geometric, and mass matrices. By deploying the isoparametric coordinate system, the derived elementary matrices are computed using the Gauss quadrature rule. To overcome the shear-locking phenomenon, the reduced integration technique is used for the shear strain energy. Furthermore, the effect of porosity distribution patterns on the free vibration and buckling behaviours of porous functionally graded beams in various parameters is investigated. The obtained results extend and improve those predicted previously by alternative existing theories, in which significant parameters such as material distribution, geometrical configuration, boundary conditions, and porosity distributions are considered and discussed in detailed numerical comparisons. Determining the impacts of these parameters on natural frequencies and critical buckling loads play an essential role in the manufacturing process of such materials and their related mechanical modeling in aerospace, nuclear, civil, and other structures.

A Study on the Development of Consultant Attitude Factors in the Field of Digital Transformation (디지털 전환 분야의 컨설턴트 태도 요소 개발에 관한 연구)

  • SangJun Jee;JungRyol Kim;Yen-Yoo You
    • Journal of Industrial Convergence
    • /
    • v.21 no.4
    • /
    • pp.1-12
    • /
    • 2023
  • The era of digital transformation is rapidly emerging in industries and academia, including finance and logistics, and the consulting market for digital transformation is also growing. According to previous studies, the need for digital transformation is also mentioned in consulting institutions. In this process, the role of consultants should be changed according to the times, and customer relationship management and attitude toward customers are emphasized. However, consulting research has the point that research on this has not been studied in depth. Therefore, the purpose of this study is to develop an element of attitude focusing on consultant attitudes in the field of digital transformation. As a result of research using literature analysis and modified Delphi techniques, 'customer orientation', achievement orientation', professional dignity', 'maintenance of expertise', and 'ethics' were found to be key attitude factors. This study is meaningful in that consultant attitude elements in the digital transformation field were explored and developed by verifying content validity, and consultants in the digital transformation field can recognize the importance of attitude and use it as a basic tool for capacity improvement.

Modified AES having same structure in encryption and decryption (암호와 복호가 동일한 변형 AES)

  • Cho, Gyeong-Yeon;Song, Hong-Bok
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • Feistel and SPN are the two main structures in a block cipher. Feistel is a symmetric structure which has the same structure in encryption and decryption, but SPN is not a symmetric structure. In this paper, we propose a SPN which has a symmetric structure in encryption and decryption. The whole operations of proposed algorithm are composed of the even numbers of N rounds where the first half of them, 1 to N/2 round, applies a right function and the last half of them, (N+1)/2 to N round, employs an inverse function. And a symmetry layer is located in between the right function layer and the inverse function layer. In this paper, AES encryption and decryption function are selected for the right function and the inverse function, respectively. The symmetric layer is composed with simple matrix and round key addition. Due to the simplicity of the symmetric SPN structure in hardware implementation, the proposed modified AES is believed to construct a safe and efficient cipher in Smart Card and RFID environments where electronic chips are built in.

An Exploratory Study of EVMS Environment Factors and their Impact on Cost Performance for Construction and Environmental Projects

  • Aramali, Vartenie;Sanboskani, Hala;G. Edward Jr., Gibson;Asmar, Mounir El
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.170-178
    • /
    • 2022
  • A high-performing Earned Value Management System (EVMS) can influence project success and help stakeholders meet project objectives. Although EVMS processes are well-supported by technical guidelines and standards, project managers often face challenges related to the project culture, team, resources, and business practices that make up the project environment within which an EVMS is being used. A comprehensive literature review revealed a lack of a data-driven and consistent assessment frameworks that can gauge the environment surrounding EVMS implementation. This paper will discuss the EVMS environment of construction and environmental projects, and examine its impact on cost performance. The authors used a multi-method approach to identify 27 environment factors that make up the EVMS environment, assessing them on 18 construction and environmental projects worth over $2 billion of total cost. Research methods employed include: (1) a literature review of more than 300 references; (2) a survey of 294 respondents; and (3) remote research charrettes with more than 60 participating expert practitioners. Culture (one of the identified environment categories) was found to be relatively more important in terms of its impact on the EVMS environment, followed by people, practices, and resources. These exploratory results show statistically significant differences in cost performance between completed projects with either a good or poor environment, for the sample projects. Key environment factors are outlined, and guidance is provided to practitioners around how to set up an effective EVMS environment in a construction or environmental project to inform decision-making and support achieving the project cost objectives successfully.

  • PDF

Real-time Online Study and Exam Attitude Dataset Design and Implementation (실시간 온라인 수업 및 시험 태도 데이터 세트 설계 및 구현)

  • Kim, Junsik;Lee, Chanhwi;Song, Hyok;Kwon, Soonchul
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.124-132
    • /
    • 2022
  • Recently, due to COVID-19, online remote classes and non-face-to-face exams have made it difficult to manage class attitudes and exam cheating. Therefore, there is a need for a system that automatically recognizes and detects the behavior of students online. Action recognition, which recognizes human action, is one of the most studied technologies in computer vision. In order to develop such a technology, data including human arm movement information and information about surrounding objects, which can be key information in online classes and exams, are needed. It is difficult to apply the existing dataset to this system because it is classified into various fields or consists of daily life action. In this paper, we propose a dataset that can classify attitudes in real-time online tests and classes. In addition, it shows whether the proposed dataset is correctly constructed through comparison with the existing action recognition dataset.