• Title/Summary/Keyword: Smart Health

Search Result 1,494, Processing Time 0.03 seconds

Sound PSD Image based Tool Condition Monitoring using CNN in Machining Process (생산 공정에서 CNN을 이용한 음향 PSD 영상 기반 공구 상태 진단 기법)

  • Lee, Kyeong-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.981-988
    • /
    • 2022
  • The intelligent production plant called smart factories that apply information and communication technology (ICT) are collecting data in real time through various sensors. Recently, researches that effectively applying to these collected data have gained a lot of attention. This paper proposes a method for the tool condition monitoring based on the sound signal generated in machining process. First, it not only detects a fault tool, but also presents various tool states according to idle and active operation. The second, it's to represent the power spectrum of the sounds as images and apply some transformations on them in order to reveal, expose, and emphasize the health patterns that are hidden inside them. Finally, the contrast-enhanced PSD image obtained is diagnosed by using CNN. The results of the experiments demonstrate the high discrimination potential afforded by the proposed sound PSD image + CNN and show high diagnostic results according to the tool status.

Environment and Development of the Weather Monitoring Application in Kosovo

  • Shabani, Milazim;Baftiu, Naim;Baftiu, Egzon;Maloku, Betim
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.371-379
    • /
    • 2022
  • The environment in Kosovo is a topic of concern for the citizens and the state because of the temperatures that affect the health of the citizens and the climate around the world. Kosovo's climate is related to its geographical position. Stretching in the middle latitude, Kosovo's climate depends on the amount of heat coming from the Sun, the proximity of the Adriatic Sea, the Vardar valley, the openness to the north. In order to better understand the climatic features of Kosovo, one must know the elements of the climate such as: sunshine, temperature, precipitation, atmospheric pressure, winds. The Meteorological Institute of Kosovo is responsible for measuring temperatures in Kosovo since 2014 and until now 12 meteorological stations have been operationalized with automatic measurement and real-time data transfer to the central system for data collection and archiving. The hydrometeorological institute lacks an application for measuring temperatures in all the countries of Kosovo. Software applications are generally built to suit the requirements of different governments and clients in order to enable easier management of the jobs they operate on. One of the forms of application development is the development of mobile applications based on android. The purpose of the work is to create a mobile application based on the Android operating system that aims to display information about the weather, this type of application is necessary and important for users who want to see the temperature in different places in Kosovo, but also the world. This type of application offers many options such as maximum temperature, minimum temperature, humidity, and air pressure. The built application will have real and accurate data; this will be done by comparing the results with other similar applications. Such an application is necessary for everyone, especially for those people whose daily work is dependent on the weather or even for those who decide to spend their vacations, such as summer or winter. In this paper, comparisons are also made within android applications for tablets, televisions and smart watches.

Homomorphic Encryption as End-to-End Solution for Smart Devices

  • Shanthala, PT;Annapurna, D;Nittala, Sravanthi;Bhat, Arpitha S;Aishwarya, Aishwarya
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.57-62
    • /
    • 2022
  • The recent past has seen a tremendous amount of advancement in the field of Internet of Things (IoT), allowing the influx of a variety of devices into the market. IoT devices are present in almost every aspect of our daily lives. While this increase in usage has many advantages, it also comes with many problems, including and not limited to, the problem of security. There is a need for better measures to be put in place to ensure that the users' data is protected. In particular, fitness trackers used by a vast number of people, transmit important data regarding the health and location of the user. This data is transmitted from the fitness device to the phone and from the phone onto a cloud server. The transmission from device to phone is done over Bluetooth and the latest version of Bluetooth Light Energy (BLE) is fairly advanced in terms of security, it is susceptible to attacks such as Man-in-the-Middle attack and Denial of Service attack. Additionally, the data must be stored in an encrypted form on the cloud server; however, this proves to be a problem when the data must be decrypted to use for running computations. In order to ensure protection of data, measures such as end-to-end encryption may be used. Homomorphic encryption is a class of encryption schemes that allow computations on encrypted data. This paper explores the application of homomorphic encryption for fitness trackers.

Upper Extremity Biomechanics of Manual Wheelchair Propulsion at Different Speeds (수동 휠체어 추진 속도에 따른 상지 관절 생체역학적 영향 분석)

  • Hwang, Seonhong
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.241-250
    • /
    • 2022
  • It is known that chronic pain and injury of upper limb joint tissue in manual wheelchair users is usually caused by muscle imbalance, and the propulsion speed is reported to increase this muscle imbalance. In this study, kinematic variables, electromyography, and ultrasonographic images of the upper limb were measured and analyzed at two different propulsion speeds to provide a quantitative basis for the risk of upper extremity joint injury. Eleven patients with spinal cord injury for the experimental group (GE) and 27 healthy adults for the control group (GC) participated in this study. Joint angles and electromyography were measured while subjects performed self-selected comfortable and fast-speed wheelchair propulsion. Ultrasound images were recorded before and after each propulsion task to measure the acromiohumeral distance (AHD). The range of motion of the shoulder (14.35 deg in GE; 20.24 deg in GC) and elbow (5.25 deg in GE; 2.57 deg in GC) joints were significantly decreased (p<0.001). Muscle activation levels of the anterior deltoid, posterior deltoid, biceps brachii, and triceps brachii increased at fast propulsion. Specifically, triceps brachii showed a significant increase in muscle activation at fast propulsion. AHD decreased at fast propulsion. Moreover, the AHD of GE was already narrowed by about 60% compared to the GC from the pre-tests. Increased load on wheelchair propulsion, such as fast propulsion, is considered to cause upper limb joint impingement and soft tissue injury due to overuse of the extensor muscles in a narrow joint space. It is expected that the results of this study can be a quantitative and objective basis for training and rehabilitation for manual wheelchair users to prevent joint pain and damage.

Healthy eating-out options are related to healthy eating intention in adults residing in Daqing (China)

  • Xiaoyu Ma;Seungwoo Lee;Ji-Yun Hwang
    • Journal of Nutrition and Health
    • /
    • v.56 no.1
    • /
    • pp.112-121
    • /
    • 2023
  • Purpose: Eating behaviors are influenced by food environments, such as availability and/or accessibility of healthy food options. In this study, we examined the relationship between healthy eating-out options and the intention to eat healthily in adults residing in Daqing, China, using an extended theory of planned behavior (TPB). Methods: Data were collected via an online survey conducted from April to May 2021 using a previously validated questionnaire in Daqing. A total number of 308 subjects aged 18-64, either Daqing oilfield workers or their family members were eligible and finally included in the analysis. The relationships among the attributes and the quality of healthy eating-out options, the three major constructs of TPB, and the intentions of healthy eating were examined using multiple linear regression analyses. Results: Subjective norms (p = 0.049) and perceived behavioral control (PBC) (p = 0.000) were significantly related to the healthy eating intention. The quality and attributes of the food served statistically significantly explained the intention to eat healthily. After controlling for age, sex, and body mass index, not the quality but the attributes of food served (p = 0.037), subjective norms (p = 0.016), and PBC (p = 0.000) had a significant relationship with the intention to eat healthily. The model explained 83.7% of the variance. Conclusion: The healthy eating-out choices, along with subjective norms and PBC of TPB, may be a potential determinant of healthy eating intention among Chinese adults living in Daqing, China. Policy implications have highlighted that not only the personal intention to eat healthy foods, but also the available healthy food environment may be important for the choice of healthy options by the population of interest. Therefore, building an environment for healthy eating choices and campaigns aimed at increasing consumer awareness of healthy eating are equally important for a smart eating choice.

Twin models for high-resolution visual inspections

  • Seyedomid Sajedi;Kareem A. Eltouny;Xiao Liang
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.351-363
    • /
    • 2023
  • Visual structural inspections are an inseparable part of post-earthquake damage assessments. With unmanned aerial vehicles (UAVs) establishing a new frontier in visual inspections, there are major computational challenges in processing the collected massive amounts of high-resolution visual data. We propose twin deep learning models that can provide accurate high-resolution structural components and damage segmentation masks efficiently. The traditional approach to cope with high memory computational demands is to either uniformly downsample the raw images at the price of losing fine local details or cropping smaller parts of the images leading to a loss of global contextual information. Therefore, our twin models comprising Trainable Resizing for high-resolution Segmentation Network (TRS-Net) and DmgFormer approaches the global and local semantics from different perspectives. TRS-Net is a compound, high-resolution segmentation architecture equipped with learnable downsampler and upsampler modules to minimize information loss for optimal performance and efficiency. DmgFormer utilizes a transformer backbone and a convolutional decoder head with skip connections on a grid of crops aiming for high precision learning without downsizing. An augmented inference technique is used to boost performance further and reduce the possible loss of context due to grid cropping. Comprehensive experiments have been performed on the 3D physics-based graphics models (PBGMs) synthetic environments in the QuakeCity dataset. The proposed framework is evaluated using several metrics on three segmentation tasks: component type, component damage state, and global damage (crack, rebar, spalling). The models were developed as part of the 2nd International Competition for Structural Health Monitoring.

Distribution of Freshwater Organisms in the Pyeonggang Stream and Application Effects of Hydrothermal Energy on Variations in Water Temperature by Return Flow in a Stream Ecosystem

  • Dohun Lim;Yoonjin Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.185-199
    • /
    • 2023
  • This study aimed to predict the effects of water ecology on the supply of hydrothermal energy to model a housing complex in Eco Delta Smart Village in Busan. Based on the results, engineering measures were recommended to minimize problems due to possible temperature variations on the supply of hydrothermal energy from the river. The current distribution of fish, benthic macroinvertebrates, and phytoplankton in the Pyeonggang Stream was monitored to determine their effects on water ecology. In the research area, five species and three families of fish were observed. The dominant species was Lepomis macrochirus, and the subdominant species was Carassius auratus. Twenty-five species and 21 families of benthic macroinvertebrates were found. The distribution of aquatic insects was poor in this area. The dominant species were Chironomidae sp., Lymnaea auricularia, Appasus japonicus, and Caridina denticulata denticulata in February, May, July, and October. Dominant phytoplankton were Aulacoseira ambigua and Nitzschia palea in February and May. Microcystis sp. was dominant in July and October. The health of the ecology the Pyeonggang Stream was assessed as D (bad) according to the benthic macroinvertebrate index (BMI). Shifts in the location of the discharge point 150 m downstream from intake points and discharge through embedded rock layer after adding equal amounts of stream water as was taken at the beginning were suggested to minimize water temperature variations due to the application of hydrothermal energy. When the scenario (i.e., quantity of water intake and dilution water, 1,600 m3/d and water temp. difference ±5 ℃) was realized, variations in water temperature were assessed at -0.19 ℃ and 0.59 ℃ during cooling and heating, respectively, at a point 10 m downstream. Water temperatures recorded at -0.20 ℃ and 0.68 ℃ during cooling and heating, respectively, at a point 10 m upstream. All stream water temperatures after the application of hydrothermal energy recovered within 24 hours. Future work on the long-term monitoring of ecosystems is suggested, particularly to analyze the influence of the water environment on hydrothermal energy supply operations.

Mediating effect of negative perceived stress on the relationship between premenstrual syndrome and emotional eating

  • Yesol Um;Jisun Lee
    • Nutrition Research and Practice
    • /
    • v.17 no.2
    • /
    • pp.330-340
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Emotional eating is one of the eating behaviors in which negative emotions affect eating. During the luteal phase, premenstrual syndrome (PMS) and its associated psychological and physical symptoms can appear in some women, and a few of them suffer from premenstrual dysphoric disorder (PMDD), a severe form of PMS. Some women diagnosed with PMS/PMDD experience emotional eating during the luteal phase, which may be a coping mechanism for psychological stress. This study aimed to investigate how PMS/PMDD and negatively perceived stress are related to emotional eating. SUBJECTS/METHODS: A total of 409 women aged 20 to 39 yrs with a body mass index (BMI) ranging from 18.5 to 29.9 kg/m2 participated in this study. Participants who responded to all the questions of the Shortened Premenstrual Assessment Form, Negative Perceived Stress Scale, and Emotional Eater Questionnaire were divided into a PMDD and a non-PMDD group according to the cut-off value for PMDD diagnosis. Independent t-tests and mediation analyses were performed to compare the 2 groups. RESULTS: No significant differences between the 2 groups were found in terms of BMI; however, the average values for emotional eating, PMS, and negative perceived stress of the PMDD group were significantly higher than those of the non-PMDD group. Only negative perceived stress had a significant effect on emotional eating in the non-PMDD group. In the PMDD group, PMS was statistically significant for both negative perceived stress and emotional eating mediated by negative perceived stress. Consequently, it appeared to have a partial or complete mediation depending on the independent variable for the PMDD group. CONCLUSIONS: This study highlights the importance of managing negative perceived stress to control emotional eating in PMS/PMDD for improved women's health.

Dental plaque removal efficiency of a smart toothbrush based on augmented reality in children (증강현실 기반 스마트 칫솔의 치면세균막 제거효과 평가)

  • Min-Ji Park;Suk-Bin Jang;Jae-Young Lee
    • Journal of Korean society of Dental Hygiene
    • /
    • v.23 no.1
    • /
    • pp.33-42
    • /
    • 2023
  • Objectives: Based on the strengths of augmented reality (AR), this study aimed to determine the dental plaque removal efficiency of a guided brushing program in children. Methods: This randomized, controlled, double-blind crossover clinical trial evaluated the plaque removal rate after regular brushing versus AR-based guided toothbrushing in 20 children aged 5-12 years. Results: Overall, the dental plaque removal efficiency of AR-based brushing was superior to that of regular brushing (p<0.05). When classified in detail, no significant difference was noted in the plaque removal rate between the two brushing methods in the anterior region (p=0.056), whereas a significant difference in the plaque removal rate was observed in the posterior region (p<0.05). Conclusions: Based on these results, the efficacy of dental plaque removal for brushing using an AR-based smartphone application was confirmed; thus, this can be used for oral health education incorporating ICT technology in the future.

The Effects of Unstable Surface Training on Balance and Gait in Stroke Patients: A Systematic Review and Meta-Analysis

  • SeonCheol Yang;Jihye Jung;Seungwon Lee
    • Physical Therapy Rehabilitation Science
    • /
    • v.12 no.1
    • /
    • pp.62-71
    • /
    • 2023
  • Objective: Stroke patients need the training to adjust their posture and maintain balance is necessary to restore movement function, and unstable support training is one of the appropriate training. In this study, a systematic review and meta-analysis were conducted to find out the effects of unstable surface training on balance and gait in stroke patients. Design: Systematic review and meta-analysis Methods: After creating a search expression referring to MeSH and EMTREE, the literature from 1976 to February 2022 was searched in the databases of PubMed, EMBASE, and Cochrane Library CENTRAL. A total of 331 studies were searched from three databases, and 11 studies were finally selected according to the inclusion criteria. Unstable surface training included studies using balance trainer, Whole-body vibration, and sand surfaces. Results: The results were found to be d=2.28 (p=0.02) and the effect size was 0.36 (95% CI: 0.05, 0.67) on the Berg Balance Scale. In the Kinesthetic Ability Trainer static balance, d=2.59 (p=0.01) and the effect size was 1.01 (95% CI: 0.24, 1.78). Timed Up and Go test showed that d=2.18 (p=0.03) and the effect size was 0.38 (95% CI: 0.04, 0.72). At the gait speed, d=0.99 (p=0.32) and the effect size was 0.15 (95% CI: -0.15, 0.45). In the 6-minute walk test, d=0.14 (p=0.89) and the effect size was 0.04 (95% CI: -0.47, 0.55). Conclusions: In this study was found that training was effective in balance if it became unstable in standing posture. Therefore, unstable surface training can be used to improve the balance of stroke patients in clinical practice.